Графический способ корреляционного анализа

Графический метод (метод корреляционного поля)

Графический метод часто называют методом корреляционного поля. Сущность его заключается в следующем: на график, у которого одна ось х – признак-фактор, а другая ось у – признак-результат, наносятся точки, отображающие исходную информацию (удобнее в ранжированном виде, по таблице 10.2), и соединяются ломаной линией. Далее по расположению этих точек на графике делается вывод о наличии, направлении и, частично, о тесноте связи:

а) если точки на графике концентрируются около некоторой прямой, направленной из левого нижнего в правый верхний угол, то принимается вывод о наличии прямой связи (связь есть, связь прямая);

б) если точки концентрируются около прямой, направленной из левого верхнего в правый нижний угол, связь есть и она обратная;

в) если точка концентрируется в виде дуги около некоторой кривой (например, параболы) принимается вывод о наличии криволинейной связи;

г) если на корреляционном поле наблюдается хаотичный разброс точек, принимается вывод об отсутствии взаимосвязи исследуемых признаков.

Примерный вывод о тесноте связи делается на основании разброса точек на корреляционном поле. Чем ближе они концентрируются вокруг некоторой прямой или кривой, т.е. чем меньше их рассеяние, тем теснее корреляционная связь.

В нашем примере (рисунок 10.1) точки на корреляционном поле концентрируются около прямой, направленной из левого нижнего в правый верхний угол, что позволяет сделать вывод о наличии прямой зависимости между фондоотдачей и удельным весом активной части в общей стоимости основных средств. Более того, точки сконцентрированы достаточно близко к некоторой прямой.

Рисунок 10.1 – Корреляционное поле зависимости фондоотдачи (у) от удельного веса активной части основных средств (x)

Вывод: связь есть, связь прямая и достаточно тесная.

Балансовый метод

Этот метод имеет и целый ряд других названий: табличный метод, метод корреляционной таблицы, метод корреляционной решетки.

Для построения такой таблицы (она имеет форму шахматной таблицы), группируются уровни х и у исходя из следующих правил:

— интервалы устанавливаются равные, т.е. ширина интервала определяется по формуле:

для признака-фактора ,

для признака-результата ;

— количество групп (k) одинаковое для х и для у;

— количество интервалов не следует делать большим, т.к. таблица теряет наглядность (хотя строгих правил нет).

В нашем примере примем k = 4, тогда

,

.

После этого строится макет корреляционной таблицы по строкам – признак-фактор, по столбцам – признак-результат.

Группы предприя- тий по y Группы предприятий по х 2,5 -2,8 2,8-3,1 3,1-3,4 3,4-3,7 Всего
48,00 — 52,25 . .
52,25 – 56,50 ..
56,50 – 60,75 ..
60,75 – 65,00 .
Всего

Заполнение построенной таблицы производится методом точек или черточек: на пересечении соответствующей строки (х) и столбца (у) в любом месте квадрата (прямоугольника) ставится точка либо черточка. Иногда ставится число, показывающее общее количество единиц совокупности, которое попало в данный прямоугольник (в левом верхнем квадрате должна быть 1, а в правом нижнем – 3).

Читайте также:  Способы выявления способных детей

На последнем этапе производится анализ расположения единиц совокупности по группам, т.е. в таблице:

а) если точки впиваются в эллипс, направленный из левого верхнего в правый нижний угол, связь есть, и она прямая;

б) если точки вписываются в эллипс, направленный из левого нижнего в правый верхний угол, связь есть, и она обратная;

в) если точки концентрируются около некоторой дуги, делается предположение о наличии криволинейной связи;

г) при хаотичном разбросе данных принимается вывод об отсутствии связи между исследуемыми признаками.

В нашем примере точки в корреляционной таблице вписываются в эллипс, направленный из левого верхнего в правый нижний угол, следовательно, между фондоотдачей и удельным весом активной части основных средств существует прямая связь.

Дата добавления: 2016-01-16 ; просмотров: 1027 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Метод корреляционного анализа: пример. Корреляционный анализ — это.

В научных исследованиях часто возникает необходимость в нахождении связи между результативными и факторными переменными (урожайностью какой-либо культуры и количеством осадков, ростом и весом человека в однородных группах по полу и возрасту, частотой пульса и температурой тела и т.д.).

Вторые представляют собой признаки, способствующие изменению таковых, связанных с ними (первыми).

Понятие о корреляционном анализе

Существует множество определений термина. Исходя из вышеизложенного, можно сказать, что корреляционный анализ — это метод, применяющийся с целью проверки гипотезы о статистической значимости двух и более переменных, если исследователь их может измерять, но не изменять.

Есть и другие определения рассматриваемого понятия. Корреляционный анализ — это метод обработки статистических данных, заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей. Корреляционный анализ — это метод по изучению статистической зависимости между случайными величинами с необязательным наличием строгого функционального характера, при которой динамика одной случайной величины приводит к динамике математического ожидания другой.

Понятие о ложности корреляции

При проведении корреляционного анализа необходимо учитывать, что его можно провести по отношению к любой совокупности признаков, зачастую абсурдных по отношению друг к другу. Порой они не имеют никакой причинной связи друг с другом.

В этом случае говорят о ложной корреляции.

Задачи корреляционного анализа

Исходя из приведенных выше определений, можно сформулировать следующие задачи описываемого метода: получить информацию об одной из искомых переменных с помощью другой; определить тесноту связи между исследуемыми переменными.

Корреляционный анализ предполагает определение зависимости между изучаемыми признаками, в связи с чем задачи корреляционного анализа можно дополнить следующими:

  • выявление факторов, оказывающих наибольшее влияние на результативный признак;
  • выявление неизученных ранее причин связей;
  • построение корреляционной модели с ее параметрическим анализом;
  • исследование значимости параметров связи и их интервальная оценка.

Связь корреляционного анализа с регрессионным

Условия использования метода

Результативные факторы зависят от одного до нескольких факторов. Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках. Первое может определяться нормальным законом — в этом случае результатом корреляционного анализа выступают коэффициенты корреляции Пирсона, либо, в случае, если признаки не подчиняются этому закону, используется коэффициент ранговой корреляции Спирмена.

Читайте также:  Способы приготовления куриных ножек

Правила отбора факторов корреляционного анализа

При применении данного метода необходимо определиться с факторами, оказывающими влияние на результативные показатели. Их отбирают с учетом того, что между показателями должны присутствовать причинно-следственные связи. В случае создания многофакторной корреляционной модели отбирают те из них, которые оказывают существенное влияние на результирующий показатель, при этом взаимозависимые факторы с коэффициентом парной корреляции более 0,85 в корреляционную модель предпочтительно не включать, как и такие, у которых связь с результативным параметром носит непрямолинейный или функциональный характер.

Отображение результатов

Результаты корреляционного анализа могут быть представлены в текстовом и графическом видах. В первом случае они представляются как коэффициент корреляции, во втором — в виде диаграммы разброса.

При отсутствии корреляции между параметрами точки на диаграмме расположены хаотично, средняя степень связи характеризуется большей степенью упорядоченности и характеризуется более-менее равномерной удаленностью нанесенных отметок от медианы. Сильная связь стремится к прямой и при r=1 точечный график представляет собой ровную линию. Обратная корреляция отличается направленностью графика из левого верхнего в нижний правый, прямая — из нижнего левого в верхний правый угол.

Трехмерное представление диаграммы разброса (рассеивания)

Помимо традиционного 2D-представления диаграммы разброса в настоящее время используется 3D-отображение графического представления корреляционного анализа.

Также используется матрица диаграммы рассеивания, которая отображает все парные графики на одном рисунке в матричном формате. Для n переменных матрица содержит n строк и n столбцов. Диаграмма, расположенная на пересечении i-ой строки и j-ого столбца, представляет собой график переменных Xi по сравнению с Xj. Таким образом, каждая строка и столбец являются одним измерением, отдельная ячейка отображает диаграмму рассеивания двух измерений.

Оценка тесноты связи

Теснота корреляционной связи определяется по коэффициенту корреляции (r): сильная — r = ±0,7 до ±1, средняя — r = ±0,3 до ±0,699, слабая — r = 0 до ±0,299. Данная классификация не является строгой. На рисунке показана несколько иная схема.

Пример применения метода корреляционного анализа

В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.

Исходные данные для корреляционного анализа

Фермеры, лесники и рыбаки

Шахтеры и работники карьеров

Производители газа, кокса и химических веществ

Изготовители стекла и керамики

Работники печей, кузнечных, литейных и прокатных станов

Работники электротехники и электроники

Инженерные и смежные профессии

Изготовители рабочей одежды

Работники пищевой, питьевой и табачной промышленности

Производители бумаги и печати

Производители других продуктов

Художники и декораторы

Водители стационарных двигателей, кранов и т. д.

Рабочие, не включенные в другие места

Работники транспорта и связи

Складские рабочие, кладовщики, упаковщики и работники разливочных машин

Работники службы спорта и отдыха

Администраторы и менеджеры

Профессионалы, технические работники и художники

Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).

Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.

С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.

Использование ПО при проведении корреляционного анализа

Описываемый вид статистической обработки данных может осуществляться с помощью программного обеспечения, в частности, MS Excel. Корреляционный анализ в Excel предполагает вычисление следующих парамет­ров с использованием функций:

1. Коэффициент корреляции определяется с помощью функции КОРРЕЛ [CORREL](массив1; массив2). Массив1,2 — ячейка интервала значений результативных и факторных переменных.

Линейный коэффициент корреляции также называется коэффициентом корреляции Пирсона, в связи с чем, начиная с Excel 2007, можно использовать функцию ПИРСОН (PEARSON) с теми же массивами.

Графическое отображение корреляционного анализа в Excel производится с помощью панели «Диаграммы» с выбором «Точечная диаграмма».

После указания исходных данных получаем график.

2. Оценка значимости коэффициента парной корреляции с использованием t-критерия Стьюдента. Рассчитанное значение t-критерия сравнивается с табличной (критической) величиной данного показателя из соответствующей таблицы значений рассматриваемого параметра с учетом заданного уровня значимости и числа степеней свободы. Эта оценка осуществляется с использованием функции СТЬЮДРАСПОБР (вероятность; степени_свободы).

3. Матрица коэффициентов парной корреляции. Анализ осуществляется с помощью средства «Анализ данных», в котором выбирается «Корреляция». Статистическую оценку коэффициентов парной корреляции осуществляют при сравнении его абсолютной величины с табличным (критическим) значением. При превышении расчетного коэффициента парной корреляции над таковым критическим можно говорить, с учетом заданной степени вероятности, что нулевая гипотеза о значимости линейной связи не отвергается.

В заключение

Использование в научных исследованиях метода корреляционного анализа позволяет определить связь между различными факторами и результативными показателями. При этом необходимо учитывать, что высокий коэффициент корреляции можно получить и из абсурдной пары или множества данных, в связи с чем данный вид анализа нужно осуществлять на достаточно большом массиве данных.

После получения расчетного значения r его желательно сравнить с r критическим для подтверждения статистической достоверности определенной величины. Корреляционный анализ может осуществляться вручную с использованием формул, либо с помощью программных средств, в частности MS Excel. Здесь же можно построить диаграмму разброса (рассеивания) с целью наглядного представления о связи между изучаемыми факторами корреляционного анализа и результативным признаком.

Источник

Читайте также:  Способ деления бактерий растений животных
Оцените статью
Разные способы