Жгутики бактерий типы расположения ультраструктура значение способы выявления

Жгутики и включения у бактерий. Методы их обнаружения.

Жгутики служат бактериальной клетке органами движения. Лишь у спирохет эту функцию выполняет осевая нить (аксиальная фибрилла). И жгутики бактерий, и осевые нити спирохет состоят из сократительного белка флагеллина.

А. Жгутики обладают вращательным типом движения.

Б. Существует классификация бактерий по числу и расположению их жгутиков.

1. Бактерии, имеющие один жгутик называются монотрихами. Как правило, такой жгутик расположен на полюсе клетки. Монотрихи – самые «быстроходные» среди бактерий.

2. Бактерии, имеющие более одного жгутика, называются политрихами.

а. Если у бактерий имеется – как правило, на полюсе клетки – пучок жгутиков, то такие бактерии на-зываются лофотрихами.

б. Если пучки жгутиков (или два жгутика) располагаются на противоположенных полюсах клетки, то такие бактерии называются амфитрихами.

в. Если жгутики располагаются по всему периметру клетки, то такие бактерии называются перитри-хами.

3. Бактерии, лишённые жгутиков, называются атрихами.

В. Методы выявления жгутиков условно можно разделить на две группы: косвенные и прямые.

1. Косвенно жгутики можно выявить по факту подвижности бактериальных клеток. Для выявления подвижности бактерий готовят, например, препарат «раздавленная» (или «придавленная») капля. Для этого каплю бактериальной культуры – лучше, если эта культура будет при этом выращена на жидкой питательной среде – помещают на предметное стекло и накрывают покровным стеклом. Микроскопируют или с помощью иммерсионной системы или использую объектив 40. Для того, чтобы чётче раз-глядеть неокрашенные живые бактерии, можно несколько затемнить поле зрения, приспустив конденсор.

2. При прямом обнаружении жгутиков их непосредственно наблюдают в микроскоп.

Для этого применяются специальные методы окраски. Например, метод Морозова основан на обволакивании жгутика тонким слоем солей серебра или ртути. При этом жгутик, не меняя своей формы, становиться чуть толще. Этого достаточно, чтобы структура, «перешагнув» нижнюю границу разрешающей способности иммерсионного микроскопа, стала видимой.

Включе­ния.В цитоплазме имеются различные включе­ния в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они накапливаются при избытке питательных веществ в окружающей среде и выполняют роль запасных веществ для пита­ния и энергетических потребностей.

Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Толуидиновым синим или метиленовым голу­бым волютин окрашивается в красно-фиоле­товый цвет, а цитоплазма бактерии — в синий. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде ин­тенсивно прокрашивающихся полюсов клетки. Метахроматическое окрашивание волютина связано с высоким содержанием полимеризо-ванного неорганического полифосфата. При электронной микроскопии они имеют вид элек­тронно-плотных гранул размером 0,1—1,0 мкм.

Питание бактерий. Источники основных элементов. Классификация бактерий по типам питания. Основные различия между ауто – и гетеротрофами, сапрофитами и паразитами. Факторы роста. Механизмы транспорта питательных веществ в бактериальную клетку.

Читайте также:  Лучший способ усыпить ребенка

Типы питания.Микроорганизмы нуждают­ся в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы, использующие для построения своих клеток диоксид углерода С02 и другие неорганические соединения, и гетеротрофы, питающиеся за счет готовых органических соединений. Аутотрофными бактериями являются нитрифицирующие бактерии, находящиеся в почве; серобактерии, обитающие в воде с сероводородом; железобак­терии, живущие в воде с закисным железом, и др.

Гетеротрофы, утилизирующие органические остатки отмерших организмов в окружающей среде, называются сапрофитами. Гетеротрофы, вызывающие заболевания у человека или живот­ных, относят к патогенным и условно-патогенным. Среди пато­генных микроорганизмов встречаются облигатные и фа­культативные паразиты (от греч. parasitos — нахлебник). Облигатные паразиты способны существовать только внутри клетки, например риккетсии, вирусы и некоторые простейшие.

В зависимости от окисляемого субстрата, называемого доно­ром электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, использующие в качестве доноров во­дорода неорганические соединения, называют литотрофны-ми (от греч. lithos — камень), а микроорганизмы, использую­щие в качестве доноров водорода органические соединения, — органотрофами.

Механизмы питания.Поступление различных веществ в бак­териальную клетку зависит от величины и растворимости их мо­лекул в липидах или воде, рН среды, концентрации веществ, различных факторов проницаемости мембран и др. Клеточная стенка пропускает небольшие молекулы и ионы, задерживая мак­ромолекулы массой более 600 Д. Основным регулятором поступ­ления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения пи­тательных веществ в бактериальную клетку: это простая диффу­зия, облегченная диффузия, активный транспорт, транслокация групп.

Наиболее простой механизм поступления веществ в клетку — простая диффузия, при которой перемещение веществ про­исходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Вещества проходят через липид-ную часть цитоплазматической мембраны (органические молеку­лы, лекарственные препараты) и реже по заполненным водой каналам в цитоплазматической мембране. Пассивная диффузия осуществляется без затраты энергии.

Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазмати­ческой мембраны. Однако этот процесс осуществляется с помо­щью молекул-переносчиков, локализующихся в цитоплазматичес­кой мембране и обладающих специфичностью. Каждый перенос­чик транспортирует через мембрану соответствующее вещество или передает другому компоненту цитоплазматической мембра­ны — собственно переносчику. Белками-переносчиками могут быть пермеазы, место синтеза которых — цитоплазматичес­кая мембрана. Облегченная диффузия протекает без затраты энер­гии, вещества перемещаются от более высокой концентрации к более низкой.

Активный транспорт происходит с помощью пермеаз и направлен на перенос веществ от меньшей концентрации в сто­рону большей, т.е. как бы против течения, поэтому данный про цесс сопровождается затратой метаболической энергии (АТФ), образующейся в результате окислительно-восстановительных ре­акций в клетке.

Перенос (транслокация) групп сходен с активным транспортом, отличаясь тем, что переносимая молекула видо­изменяется в процессе переноса, например фосфорилируется.

Выход веществ из клетки осуществляется за счет диффузии и при участии транспортных систем.

Читайте также:  Для представления алгоритмов используются следующие способы описания алгоритма

Классификация бактерий по источнику получения энергии. Основные различия между фото – и хемотрофами, аэробами и анаэробами. Биохимические механизмы аэробного и анаэробного дыхания. Методы культивирования анаэробных бактерий.

Учитывая источник энергии, среди бактерий различают фототрофы, т.е. фотосинтезирующие (например, сине-зеленые во­доросли, использующие энергию света), и хемотрофы, нуж­дающиеся в химических источниках энергии.

Дыхание, или биологическое окисление, основано на окисли­тельно-восстановительных реакциях, идущих с образованием АТФ-универсального аккумулятора химической энергии. Энергия необходима микробной клетке для ее жизнедеятельности. При дыхании происходят процессы окисления и восстановления: окисление — отдача донорами (молекулами или атомами) во­дорода или электронов; восстановление — присоединение водо­рода или электронов к акцептору. Акцептором водорода или электронов может быть молекулярный кислород (такое дыхание называется аэробным) или нитрат, сульфат, фумарат (такое дыхание называется анаэробным — нитратным, сульфатным, фумаратным).

Анаэробиоз (от греч. аег — воздух + bios — жизнь) — жизнедеятельность, протекающая при отсутствии сво­бодного кислорода. Если донорами и акцепторами водорода яв­ляются органические соединения, то такой процесс называется брожением. При брожении происходит ферментативное расщепление органических соединений, преимущественно углеводов, в анаэробных условиях. С учетом конечного продукта расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое и другие виды брожения.

По отношению к молекулярному кислороду бактерии можно разделить на три основные группы: облигатные, т.е. обязатель­ные, аэробы, облигатные анаэробы и факультативные анаэробы.

Источник

Жгутики

Жгутики – нитевидные структуры, расположенные на поверхности клетки и являющиеся органами движения бактериальной клетки [2] [3] .

Содержание:

Жгутики – это необязательный структурный компонент бактериальной клетки. Они могут быть удалены без нарушения метаболизма клетки [2] [3] . Первые сведения о наличии жгутиков у бактерии сообщил в 1838 году немецкий естествоиспытатель Г. Эренбер. В 1897 году немецкий ботаник В. Мигула дал их морфологическое описание [3] . Жгутики у бактерий видны только в электронном микроскопе. В световом микроскопе, без специальной обработки отдельные жгутики увидеть нельзя [1] . В процессе окрашивания бактерий по Граму жгутики не видны [2] .

Типы жгутикования у бактерий

1. Монотрих; 2. Лофотрих; 3. Амфитрих; 4. Перитрих [1] .

Типы бактерий в зависимости от расположения и числа жгутиков

В зависимости от расположения и числа жгутиков на поверхности клетки различают следующие типы бактерий:

  • монотрихи – имеют только один жгутик (род Caulobacter и род Vibrio);
  • лофотрихи – имеют на одном или на обоих полюсах клетки пучок жгутиков (род Pseudomonas);
  • амфитрихи – имеют по одному жгутику на обоих полюсах клетки (род Spirillum);
  • перитрихи – имеется большое количество жгутиков, располагающихся по всей поверхности клетки (род Erwinia) [1] .

Структура жгутика

Электронно-микроскопические исследования выявляют сложную структурную организацию жгутиков [3] .

Жгутик состоит из трех частей: нити, крюка, базального тельца [1] .

Жгутик закреплен в цитоплазматической мембране и клеточной стенке с помощью базального тельца. В структуру последнего входит стержень и кольца [1] .

Количество колец базального тельца у грамотрицательных и грамположительных бактерий различно [1] .

Читайте также:  Амбробене таблетки способ применения дозы

L и P – наружная пара колец. S и M – внутренняя пара колец [1] .

Кольца жгутика грамотрицательных бактерий закреплены в разных местах:

  • L-кольцо – в наружной мембране клеточной стенки;
  • P-кольцо – в пептидогликановом слое клеточной стенки;
  • S-кольцо – в периплазматическом пространстве клеточной стенки;
  • M-кольцо – в цитоплазматической мембране[1] .

Жгутики грамположительных бактерии характеризуются базальным тельцем более простого строения. В данном случае оно состоит только из внутренней пары колец – S и M, размещенных в цитоплазматической мембране и клеточной стенке [1] .

Структура жгутика грамотрицательных бактерий

1. Нить; 2. Крюк; 3. Базальное тельце:

Химический состав жгутиков

Химический состав жгутиков однообразен. Они состоят из белка флагеллина (от латинского «flagellum» – жгутик) с молекулярной массой 25000–60000. В аминокислотном составе данного белка преобладают глутаминовая и аспарагиновая аминокислоты. Количество ароматических аминокислот в флагеллине незначительно. Триптофан, цистеин и цистин содержаться в следовых количествах или совсем отсутствуют [3] .

Движение бактерий при помощи жгутиков

Как указывалось ранее, жгутики являются органами движения бактерий. Характер движения определяется особенностью расположения жгутиков:

  • монотрихи – движутся по прямой линии;
  • перитрихи – беспорядочно и с кувырканием [3] .

Скорость движения бактерий при помощи жгутиков различна. Большинство подвижных форм бактерий за одну секунду проходят расстояние, близкое размерам их тел. Самой подвижной бактерией считается холерный вибрион. При длине тела в 2 мкм, он проходит за одну секунду до 30 мкм [3] .

Работа бактериального жгутика подобна работе корабельного винта. Если у клетки много жгутиков, то при передвижении они собираются в пучок, образующий своеобразный пропеллер. Пучок жгутиков быстро вращается против часовой стрелки, создавая силу, заставляющую бактерию двигаться почти прямолинейно. После того, как направление вращения жгутиков изменяется, пучок жгутиков расплетается, клетка останавливается и начинает хаотически вращаться и менять ориентацию. В момент, когда все жгутики снова начнут вращаться синхронно против часовой стрелки, образуя пропеллер, направление поступательного движения бактериальной клетки изменится [1] .

Поскольку у грамположительных бактерий отсутствует наружная пара колец, то считается, что для вращения жгутиков достаточно только внутренней пары колец (S и M). Данные кольца, соединенные с вращающимся стержнем, выступающим наружу, образуют своеобразный электромотор, обеспечивающий движение жгутика [1] .

В качестве источника энергии для вращения жгутиков используется протодвижущая сила, возникающая в цитоплазматической мембране. Происходит это следующим образом. На внешней стороне (периферии) кольца M расположены белки MotB. В участок цитоплазматической мембраны, примыкающей к краям колец M и S, встроены белки MotA [1] .

Вращающий момент возникает за счет взаимодействия субъединиц белка MotB с белковыми субъединицами MotA. В белковых субъединицах MotA имеются два протонных полуканала. Через них переносятся протоны из периплазматического пространства клеточной стенки в цитоплазму бактерий. В результате переноса протонов через белки MotА и MotВ происходит вращение кольца М. Один полный оборот данного кольца происходит при переносе через мембрану около 1000 протонов [1] .

Источник

Оцените статью
Разные способы