Защитное заземление способы его выполнения

ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ И СПОСОБЫ ЕГО ВЫПОЛНЕНИЯ

Многие части электроустановок, не находящиеся под напря­жением (корпуса электрических машин, кожухи трансформато­ров, осветительная арматура, приводы и кожухи электрических аппаратов, вторичные обмотки измерительных трансформаторов, каркасы распределительных шкафов и щитов управления, метал­лические конструкции подстанций, металлические оболочки ка­белей и кабельные муфты, стальные трубы электропроводок и т.п.) могут во время аварии оказаться под напряжением, что обуслов­ливает опасность поражения электрическим током обслужива­ющего персонала. Обеспечить безопасность прикосновения к та­ким частям позволяет защитное заземление, о чем уже упомина­лось в подразд. 11.1.

Рис. 11.7. Устройство заземления в трехфазной установке с изолирован­ной (а) и глухозаземленной (б) нейтралью

Заземление снижает до безопасного значения потенциал по отношению к земле металлических частей электроустановки, ока­завшихся под напряжением при аварии.

Защитное действие заземления состоит в уменьшении тока, протекающего в теле человека при соприкосновении с корпусом машины, оказавшимся под напряжением (рис. 11.7, а). Человек включается в электрическую цепь параллельно заземлению; чем больше сопротивление человека rч по сравнению с сопротивлени­ем заземления, тем меньше ток в теле человека /ч.

Сопротивление заземляющих устройств для электроустановок при различных напряжениях должно приниматься в соответствии с нормами ПУЭ.

Способы выполнения защитного заземления зависят от систе­мы электроснабжающей сети и напряжения электроустановки. В электроустановках напряжением до 1000 В с глухозаземленной нейтралью трансформаторов (или генераторов) защитное зазем­ление выполняют присоединением заземляемых частей установки к заземленному нейтральному проводу электросети. В этом случае при повреждении изоляции и переходе напряжения на металли­ческие части установки возникает короткое замыкание одной фазы трансформатора (или генератора) через нейтраль (рис. 11.7, б). В результате поврежденная часть электроустановки немедленно ав­томатически отключается (перегорает плавкая вставка предохра­нителя или отключается автомат).

В электроустановках напряжением до 1000 В с изолированной нейтралью трансформаторов (или генераторов), а также во всех установках напряжением свыше 1000 В, защитное заземление вы-

/ 3

Рис. 11.8. Правильная (а) и неправиль­ная (б) схемы присоединения заземляе­мых элементов к заземляющей магист­рали:

/ — заземляемый элемент; 2 — ответвление; 3 — заземляющая магистраль

полняют путем сооружения местного заземляющего устройства с малым сопротивлением, к которому присоединяют заземляемые части установки (см. рис. 11.7, а). Действие такого заземления со­стоит в том, что оно снижает до безопасного значения напряже­ние относительно земли, появляющееся на металлических частях установки при повреждении изоляции.

Значения сопротивления местного заземляющего устройства нормируются ПУЭ.

Для заземляющих устройств следует по возможности исполь­зовать естественные заземлители: водопроводные и другие метал­лические трубы, проложенные в земле без изоляции (кроме тру­бопроводов с горючими веществами), металлические конструк­ции зданий и сооружений, а также имеющие соединения с зем­лей шпунты, свинцовые оболочки проложенных в земле кабелей и т.п.

Искусственные заземлители, как правило, выполняют из вер­тикально забитых в грунт стальных стержней, соединяемых между собой стальными полосами. Полосы прокладывают в земле на глу­бине не менее 0,5 м и приваривают к верхним концам стержней.

Каждый заземляемый элемент 1 установки следует присоеди­нять к заземлителю или заземляющей магистрали 3 при помощи отдельного ответвления 2 (рис. 11.8, а). Заземляемые элементы нельзя включать последовательно в заземляющую магистраль (рис. 11.8, б). Присоединение заземляющих проводников к элект­рооборудованию выполняют при помощи болтов или сварки.

Заземляющие устройства начинают действовать только при по­вреждениях изоляции электроустановок.

Передвижные механизмы, электроинструменты, понизитель­ные трансформаторы и сварочные аппараты, работающие при на­пряжении до 1000 В в сетях с глухозаземленной нейтралью, полу­чают питание от питающих пунктов (щит или силовой шкаф). За­земление корпусов указанных электроприемников осуществляют заземляющей жилой питающего шлангового кабеля, один конец которой присоединяют к заземляющему болту на корпусе устрой­ства, а другой — к корпусу питающего пункта. Корпуса питающих пунктов через заземляющий зажим соединяют с нейтральным 262

Рис. 11.9. Схемы заземления однофазных (а) и трехфазных (б, зительных трансформаторов

проводом сети и через него — с заземленной нейтралью источни­ка питания (как правило, трансформатора). Все корпуса электро­инструментов, работающих при напряжении свыше 40 В, подле­жат заземлению (подсоединению к нейтральному проводу сети) с помощью специального проводника или заземляющей жилы шлангового провода (кабеля). Все корпуса и обмотки низшего на­пряжения понижающих трансформаторов для электроинструмен­та заземляют таким же образом (рис. 11.9).

Читайте также:  Способ питания бактерий автотрофы или гетеротрофы

Для выполнения повторных заземлений нейтрального провода на передвижных установках применяют переносные инвентарные заземлители, к которым присоединяют корпуса и металлические конструкции машин и механизмов.

ЗАЩИТНОЕ ОТКЛЮЧЕНИЕ

Систему защиты, обеспечивающую автоматическое отключе­ние всех фаз или полюсов аварийного участка сети за полное вре­мя отключения не более 0,2 с, называют защитным отключением.

Независимо от состояния нейтрали питающей системы любое однофазное замыкание на корпус приводит к появлению напря­жения относительно земли на корпусах электрооборудования. Это обстоятельство используют при построении универсальной защи­ты, которая обеспечивает отключение автоматами поврежденно­го электрооборудования при появлении некоторой заданной раз­ности потенциалов между корпусом и землей. Такая система иден­тична заземлению и основана на автоматическом отключении элек­троприемника, если на его металлических частях, нормально не

Рис. 11.10. Принципиальная схема защитного отключения:

/ — корпус электроприемника; 2 — отключающая пружина; 3 — контакты сетевого контактора; 4 — защелка; 5 — сердечник катушки; 6 — отключающая катушка; 7,8— заземлители; 9 — кон­такт

находящихся под напряжением, последнее появляется. Защитное отключение применяют для си­стем с изолированной и глухо-заземленной нейтралью.

Рассмотрим действие защит­ного отключения при возникно­вении напряжения на корпусе одиночного электроприемника в результате повреждения его изо­ляции. Здесь возможны два слу­чая: электроприемник не зазем­лен и электроприемник имеет заземление.

Первому случаю соответству­ет разомкнутое положение кон­такта 9 (рис. 11.10). На некото­ром расстоянии от защищаемо­го электроприемника забивают в землю заземлитель 7 (в том слу­чае, если нет естественных заземлителей, которые не должны иметь электрической связи с корпусом /электроприемника). Защитный отключатель позволяет произвести разрыв цепи электроснабже­ния контактами сетевого контактора при подаче напряжения на катушку 6.

При обесточенном состоянии катушки 6 ее сердечник 5 удер­живает защелку 4, не позволяя пружине 2 разомкнуть контакты 3 (на схеме контакты показаны разомкнутыми, хотя сердечник удер­живает защелку). Один конец обмотки катушки присоединен к корпусу 1 электроприемника, второй — к выносному заземлите -лю 7. В случае повреждения изоляции между корпусом электро­приемника и выносным заземлителем 7 появится фазное напря­жение. Отключающая катушка Покажется под напряжением, и по ее обмотке потечет ток. Сердечник 5 втянется и освободит удер­живающую защелку 4. Пружина 2 разомкнет контакты 3 сетевого контактора, и цепь питания электроустановки разорвется. Напря­жение прикосновения на корпусе электроприемника исчезнет, со­прикосновение с ним станет безопасным.

Второму случаю, когда корпус электроприемника заземлен, соответствует замкнутое положение контакта 9. При возникнове­нии повреждения изоляции на корпусе электроприемника появится напряжение, значение которого будет определять падение напря­жения в заземлителе, равное току замыкания на землю, умно­женному на сопротивление заземления заземлителя. Принципиаль ной разницы в действии защиты в первом и втором случаях нет.

Основой защиты с помощью защитного отключения является быстрое отключение поврежденного электроприемника.

Рис. 11.11. Схема защитного отклю­чения при изолированной нейтрали

Согласно ПУЭ, защитное отключение рекомендуется при­менять в следующих установках:

электроустановки с изолиро­ванной нейтралью, к которым предъявляются повышенные требования в отношении безо­пасности (в дополнение к уст­ройству заземлений). Схема та­кого защитного отключения по­казана на рис. 11.11. При появ­лении в катушке реле КА тока замыкания на землю его размы­кающий контакт в цепи катуш­ки контактора КМ размыкается и контактор своими главными контактами отключает электро­двигатель М от сети;

электроустановки с глухоза-земленной нейтралью напряже­нием до 1000 В, корпуса которых не имеют присоединения к за­земленному нейтральному проводу, поскольку выполнение тако­го присоединения затруднено;

передвижные установки, если заземление их не может быть выполнено в соответствии с требованиями ПУЭ.

Защитное отключение отличается универсальностью и быст­родействием, поэтому его использование в сетях как с глухоза-земленной, так и с изолированной нейтралью весьма перспек­тивно. Особенно целесообразно использовать его в сетях напряже­нием 380/220 В.

Недостатком защитного отключения является возможность от­каза отключения в случае пригорания контактов коммутационно­го устройства или обрыва проводов.

Источник

Устройство, принцип работы и схемы защитного заземления

Вне зависимости от эксплуатационных характеристик, электрифицируемое здание должно иметь качественно организованную систему защитной электробезопасности. Защитное заземление позволяет создать такую систему.

Этот тип заземления характеризуется соединением определенных элементов электроустановки с ЗУ (заземляющим устройством) и ориентирован на уменьшение показателей напряжений прикосновения и шага, возникающих при замыкании циркулирующих токов на корпусах электрооборудования.

Назначение и устройство защитного заземления

Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.

Согласно материалам нормативной документации ПУЭ (глава 1.7), в зависимости от выполняемой функции существует два вида устройства заземляющей системы: рабочее (функциональное) и защитное заземление.

Читайте также:  Способ защиты прав доверителя

Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.

Следует помнить! При создании заземляющего устройства дома или квартиры важный момент — характеристика внутренней электропроводки объекта. Провод должен быть трехжильный, с фазой, нулем и заземлением.

Монтаж устройства защитного заземления востребован практически повсеместно.

Заземляющая система: область применения и принцип работы

При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:

  1. Образование электрической цепи, обладающей низким сопротивлением, при коротком замыкании. Электрический ток беспроблемно пойдет по этой магистрали. Реализуется обеспечение электрической безопасности пользователя. При случайном прикосновении человека к бытовому прибору во время пробития фазы на корпусе устройства не будет потенциально опасного напряжения.
  2. Обеспечение защиты от индукционных токов. Проявляться такие типы токов могут вследствие прямого удара молнии, при этом образуется электромагнитная и электростатическая индукция.

Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:

  1. Электрической сети напряжением менее 1 кВт:
  • с переменным током трех трехфазных проводников с изоляцией нейтрали;
  • с переменным током двух однофазных проводников, которые изолированы от земли;
  • с постоянным током двух проводников при наличии изоляции обмотки источника тока.
  1. Электросети напряжением свыше 1 кВт. Возможен любой режим точек обмоток источника питания постоянного и переменного тока.

Помните! Функциональность защитной системы будет надлежащего уровня только при наличии сети с изолированной нейтралью.

Заземление — это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства — выбор конфигурации заземлителей.

Классификация заземляющих устройств

В соответствии с Правилами устройства электроустановок (ПУЭ), защитное заземление может быть реализовано с использованием заземлителей двух типов — естественных или искусственных. Заземляющие элементы этих двух категорий имеют определенные структурные отличия и особенности монтажа:

  1. Естественные заземляющие устройства. Такие заземлители могут быть представлены посредством:
  • объектов сторонних проводящих частей, которые имеют прямой контакт с грунтом;
  • объектов, контактирующих с почвой через специальную промежуточную токопроводящую среду.

Самыми распространенными конструкциями такого типа заземлителей выступают:

  • металлоконструкции зданий и фундаментов;
  • металлические оболочки проводников;
  • обсадные трубы.

Подключать элементы этой категории заземлителей необходимо минимум в двух местах.

Важно! Запрещено применять в качестве естественных заземляющих элементов: трубы теплотрасс; газопроводы; трубопроводы горючих жидкостей и горячего водоснабжения; оболочки подземных проводов с алюминиевой основой.

  1. Искусственные заземлители. Подразумевается специальное производство таких конструкций. В качестве материалов для искусственного создания защиты применяют:
  • определенного размера стальные трубы;
  • сталь полосовую толщиной свыше 4 мм;
  • сталь прутковую.

Важно знать! Большой популярностью пользуются искусственные заземлители глубинного типа. Электроды таких конструкций оцинкованные или омедненные. Преимущества — малозатратность производства и долговечность элементов.

Специфические различия искусственных и естественных устройств заземления обязательно учитываются при производстве расчетов, определяющих их оптимальную конфигурацию.

Как производится расчет параметров основных заземляющих элементов

На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.

Важно! Устройство, смонтированное в соответствии со всеми расчетными данными схемы заземления, позволяет добиться максимальной эксплуатационной эффективности всего комплекса защитного заземления.

Основа вычислений — допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.

Выполняются расчеты на основании таких данных:

  1. Описание характеристик конкретного электрического оборудования: тип установки; основные структурные элементы прибора; рабочее напряжение; возможные варианты, позволяющие осуществить заземление нейтралей как трансформирующих, так и генерирующих устройств.
  2. Конфигурация заземлителей. Такие данные необходимы для определения оптимальной глубины погружения электродов.
  3. Информация о проведенных исследованиях по измерению удельного сопротивления грунта на конкретной территории. Дополнительно учитываются климатические сведения зоны, на которой обустраивается система.
  4. Информация о пригодных естественных элементах заземления, которые можно использовать в работе. Необходимы данные о реальных значениях растекания токов у этих объектов. Получить их можно путем специальных измерений.
  5. Результат стандартного вычисления точных показателей расчетного замыкания тока на почве.
  6. Расчетные значения нормативной стандартизации допустимых характеристик напряжений по ПУЭ.
  7. Показатели сопротивления сезонного промерзания слоя грунта, в период высыхания и промерзания. Учет таких значений необходим для расчета заземляющих элементов, которые располагаются в однородной среде. Применяются специальные стандартизированные коэффициенты.
  8. При необходимости монтажа сложной группы заземлителей, состоящей из нескольких элементов, необходимы сведения всех потенциалов, которые будут наведены на монтируемые электроды. Для этого нужны данные о значениях сопротивления всех слоев грунта.
Читайте также:  Рисование матрешки нетрадиционным способом

Важно! Если система будет размещаться в двух слоях грунта, учитывается показатель сопротивления каждого из них. Это необходимо для определения точных данных о мощностных параметрах верхнего слоя почвы.

Принцип расчета сопротивления заземлителей

Способов расчета характеристик основных заземляющих элементов достаточно много, но основной параметр у таких вычислений один — показатель сопротивления. Оптимальное его значение определяется посредством данных нормативной регламентации ПУЭ. Реализовать надежное защитное заземление объекта невозможно без расчета сопротивления его основных элементов.

К примеру, необходимо определить сопротивление заземления для электрооборудования напряжением свыше 1 кВт, с изолированной нейтралью. В соответствии с профильными данными документации ПУЭ 1.7.96, необходимо воспользоваться формулой R≤250/I, где:

  • I — показатель расчетного тока заземления;
  • R — показатель сопротивления заземляющего устройства, который не должен превышать 10 Ом.

В соответствии с ПУЭ (1.7.104), при учете нормативных сведений показателей тока прикосновения (для примера подойдет — 50 В), формула видоизменяется: R≤U/I, где U — это ток прикосновения (50 В).

Важно! При изолированной нейтрали, как правило, не требуется доравнивать показатель сопротивления ниже четырех Ом. Однако идеальным показателем сопротивления заземляющей системы считается 0. Основная задача, к которой сводится производство всех профильных расчетов, неизменна — достичь максимально низкого сопротивления системы.

Помимо производства расчетов параметров, важный момент при производстве заземления — выбор схемы подключения устройства.

Схемы заземления дома

Одним из основных элементов, необходимых для обеспечения электрической и пожарной безопасности объекта, является защитное заземление, поэтому закономерно, что грамотное технологическое производство такой системы – первостепенная задача. Добиться необходимого результата решения этой задачи невозможно без правильного выбора схематического варианта соединения и подключения заземляющих элементов.

Помните! Каждый элемент, при помощи которого реализуется защитное заземление, имеет схематическое обозначение. Для того чтобы выбрать оптимальный вариант схематического обоснования подключения такой системы, человеку нужно разбираться как в буквенных, графических, так и в цветовых чертежных обозначениях.

Чаще на практике применяются два вида подключения — схемы TN-C-S и TT. Отличия в проектировании схем:

  1. Схема TN-C-S. При организации защитного заземления объекта по данной схеме, предусмотрена реализация следующих моментов:
    • роль защитного и нулевого (рабочего) проводника выполняет один кабель (PEN);
    • локализация — участок электросети от трансформатора и до ГЗШ (главной заземляющей шины). Уже на ГЗШ провод PEN разделяется на рабочий нулевой (N) и защитный (PE).
      Цифрой 1 на картинке обозначено заземление источника, а цифрой 2 – заземляемый объект (дом).

Важно! При выборе схемы TN-C-S в качестве основы производства заземляющих работ важно учесть наличие глухозаземленной нейтрали. Получается, что ГЗШ дома соединяется с заземлением самого трансформатора, питающего объект.

    Схема TT. Прежде чем применить эту схему, необходимо аргументировать отказ от использования TN-C-S системы. Предусмотрена обязательная реализация нормативных требований, установленных к системе TT, а именно:

  • производится независимое подключение элементов, исключается соединение с нейтралью трансформатора;
  • заземлитель всех корпусов электрооборудования дома не зависит от аналогичного элемента источника питания;
  • в электрической проводке дома обязательно применяется УЗО (устройство защитного отключения).

Цифрой 1 на картинке обозначено заземление источника; цифрой 2 — дом, а 3 — это само устройство заземления дома.

Важно! В схеме TT полностью отсутствует организация защиты пользователя при утечке тока во время повреждения изоляции. Следовательно, монтировать УЗО для электрической проводки, реализованной по ТТ схеме, — обязательно.

В связи со значительным затруднением производства заземляющих работ по схеме TT, большинство объектов заземляются посредством TN-C-S системы.

Заземление — важный элемент обеспечения пожарной безопасности здания и электробезопасности его жильцов. Начинать работы по его созданию, руководствуясь лишь общими понятиями определения, что такое защитное заземление, не стоит. Нужно изучить теоретические и практические особенности устройства электрозащитной системы, разбираться в производстве расчетов ее параметров и уметь произвести измерение величины ее сопротивления после монтажа. При отсутствии навыков и необходимого оборудования следует доверить выполнение такой работы профильным специалистам.

Источник

Оцените статью
Разные способы