Заместителя сколькими способами можно это сделать

Собрание выбирает председателя и заместителя. Сколькими способами это можно сделать, если в выборах участвует 20 человек?

Готовое решение: Заказ №8390

Тип работы: Задача

Статус: Выполнен (Зачтена преподавателем ВУЗа)

Предмет: Теория вероятности

Дата выполнения: 29.08.2020

Цена: 208 руб.

Чтобы получить решение , напишите мне в WhatsApp , оплатите, и я Вам вышлю файлы.

Кстати, если эта работа не по вашей теме или не по вашим данным , не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу , я смогу выполнить её в срок 1-3 дня!

Описание и исходные данные задания, 50% решения + фотография:

№1-1 5. Собрание выбирает председателя и заместителя. Сколькими способами это можно сделать, если в выборах участвует 20 человек?

Решение.

Председателем может быть выбран любой из 20-и человек. Заместителем председателя – любой из оставшихся 19-и человек. По правилу произведения в комбинаторике, число различных способов, которыми можно выбрать председателя и его заместителя, равно:

Если вам нужно решить математику, тогда нажмите ➔ заказать математику.
Похожие готовые решения:
  • Из группы студентов 20 человек выбирают старосту и заместителя. Сколько вариантов такого выбора возможно?
  • В группе 24 студентов. Требуется выбрать старосту и профорга. Сколькими способам можно это сделать?
  • Сколькими способами можно составить дозор из трёх солдат и одного офицера, если имеется 80 солдат и 3 офицера?
  • Из отделения военнослужащих 12 человек формируется караул, состоящий из начальника караула, его заместителя и трёх караульных. Сколькими способами возможно сформировать такой караул?

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Источник

КОМБИНАТОРИКА

Комбинаторика – раздел математики, который изучает задачи выбора и расположения элементов из некоторого основного множества в соответствии с заданными правилами. Формулы и принципы комбинаторики используются в теории вероятностей для подсчета вероятности случайных событий и, соответственно, получения законов распределения случайных величин. Это, в свою очередь, позволяет исследовать закономерности массовых случайных явлений, что является весьма важным для правильного понимания статистических закономерностей, проявляющихся в природе и технике.

Правила сложения и умножения в комбинаторике

Правило суммы. Если два действия А и В взаимно исключают друг друга, причем действие А можно выполнить m способами, а В – n способами, то выполнить одно любое из этих действий (либо А, либо В) можно n + m способами.

Пример 1.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить одного дежурного?

Дежурным можно назначить либо мальчика, либо девочку, т.е. дежурным может быть любой из 16 мальчиков, либо любая из 10 девочек.

По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.

Правило произведения. Пусть требуется выполнить последовательно k действий. Если первое действие можно выполнить n1 способами, второе действие n2 способами, третье – n3 способами и так до k-го действия, которое можно выполнить nk способами, то все k действий вместе могут быть выполнены:

Пример 2.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить двух дежурных?

Первым дежурным можно назначить либо мальчика, либо девочку. Т.к. в классе учится 16 мальчиков и 10 девочек, то назначить первого дежурного можно 16+10=26 способами.

После того, как мы выбрали первого дежурного, второго мы можем выбрать из оставшихся 25 человек, т.е. 25-ю способами.

По теореме умножения двое дежурных могут быть выбраны 26*25=650 способами.

Сочетания без повторений. Сочетания с повторениями

Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из n различных предметов ?

Пример 3.

Необходимо выбрать в подарок 4 из 10 имеющихся различных книг. Сколькими способами можно это сделать?

Нам из 10 книг нужно выбрать 4, причем порядок выбора не имеет значения. Таким образом, нужно найти число сочетаний из 10 элементов по 4:

.

Рассмотрим задачу о числе сочетаний с повторениями: имеется по r одинаковых предметов каждого из n различных типов; сколькими способами можно выбрать m () из этих (n*r) предметов?

.

Пример 4.

В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Т.к. среди 7 пирожных могут быть пирожные одного сорта, то число способов, которыми можно купить 7 пирожных, определяется числом сочетаний с повторениями из 7 по 4.

.

Размещения без повторений. Размещения с повторениями

Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?

Пример 5.

В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии. Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?

Читайте также:  Основные способы формирования выборки психологического исследования

В данной задаче мы не просто выбираем фотографии, а размещаем их на определенных страницах газеты, причем каждая страница газеты должна содержать не более одной фотографии. Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:

Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.

Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n предметов, среди которых есть одинаковые?

Пример 6.

У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих штампов нанести на все книги пятизначные номера– составить каталог. Сколько различных пятизначных номеров может составить мальчик?

Можно считать, что опыт состоит в 5-кратном выборе с возращением одной из 3 цифр (1, 3, 7). Таким образом, число пятизначных номеров определяется числом размещений с повторениями из 3 элементов по 5:

.

Перестановки без повторений. Перестановки с повторениями

Классической задачей комбинаторики является задача о числе перестановок без повторения, содержание которой можно выразить вопросом: сколькими способами можно разместить n различных предметов на n различных местах?

Пример 7.

Сколько можно составить четырехбуквенных «слов» из букв слова«брак»?

Генеральной совокупностью являются 4 буквы слова «брак» (б, р, а, к). Число «слов» определяется перестановками этих 4 букв, т. е.

Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на n различных местах, если среди n предметов имеются k различных типов (k

Пример 8.

Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?

Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв. Следовательно, число перестановок с повторениями равно

ОПОРНЫЙ КОНСПЕКТ ПО РАЗДЕЛУ «КОМБИНАТОРИКА»

Источник

Карточка- тренажёр по алгебре «Простейшие задачи комбинаторики»

Простейшие задачи комбинаторики.

Чтобы научиться быстро бегать, нужно много бегать. Чтобы научиться хорошо решать сложные задачи, нужно решать много простых задач. И то, и другое надо делать с умом. Последовательно тренировать определенные группы мышц, и постепенно вникать в смысл математических выражений.

Давайте рассмотрим несколько очень простых задач, сравнивая их между собой. Сравнение поможет нам понять и запомнить, как выбрать нужную формулу для подсчёта числа вариантов в той или иной ситуации. Дело в том, что эти задачи можно решить как простым перебором вариантов, тем быстрее, чем выше уровень обобщения, так и по формулам комбинаторики. Старшеклассникам рекомендую повторить формулы и правила комбинаторики .

Помните, что ваше решение не обязательно должно совпадать с моим, достаточно, чтобы оно было логичным и позволяло получить верный ответ.

При окончании деловой встречи специалисты обменялись визитными карточками. Сколько всего визитных карточек перешло из рук в руки, если во встрече участвовали 6 специалистов?

При встрече каждый из друзей пожал другому руку. Сколько всего было рукопожатий, если встретились 6 друзей?

Каждый из 6-ти специалистов отдал по 5 карточек (всем, кроме себя). Потребовалось
6·5 = 30 карточек.

В одном рукопожатии равноправно участвуют два человека. 6 друзей объединялись в группы по 2 без учёта порядка следования. Такие группировки (выборки) называются сочетаниями. Число сочетаний определяем по формуле
С 6 2 = 6!/2!/(6 — 2)! = 6!/2!/4! = 5·6/2 = 1

В хоровом кружке занимаются 9 человек. Необходимо выбрать двух солистов. Сколькими способами это можно сделать?

В спортивной команде 9 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Два солиста равноправны. (Может быть, и петь планируют дуэтом.) Нас не волнует порядок следования в группе из 2-ух человек, выбранных из 9-ти. Значит определяем число сочетаний из 9 по 2.
С 9 2 = 9! / 2!/(9 — 2)! = 9!/2!/7! = 8·9/2 = 36.

Казалось бы, мы снова выбираем 2-ух человек из 9-ти, но теперь между ними качественная разница. Они будут выполнять разные обязанности в команде. Мы выбираем капитана И заместителя независимо друг от друга. Поэтому применим правило умножения вариантов (И-правило). Из 9-ти человек капитана можно выбрать 9-тью способами. Его заместителя из оставшихся 8-ми человек — 8-мью способами. Общее число вариантов: 9·8 = 72. (Заметьте, что если сначала выбрать заместителя из 9 человек, а потом капитана из оставшихся 8-ми, результат будет тот же.)

Можно рассуждать иначе. Есть два места для капитана и его заместителя, нужно разместить на них 2-ух человек, выбрав их из 9-ти. Такие группировки (выборки) называются размещениями. Число размещений определяем по формуле
А 9 2 = 9! / (9 — 2)! = 9!/7! = 8·9 = 7

Сколько существует вариантов рассаживания вокруг стола 6 гостей на 6 стульях?

В понедельник в пятом классе 5 уроков: музыка, математика, русский язык, литература и история. Сколько различных способов составления расписания на понедельник существует?

Легко понять, что в этой задаче речь идет о перестановках. 6 гостей занимают все 6 стульев и могут только меняться местами. Число перестановок из 6 определяем по формуле
P 6 = 6! = 1·2·3·4·5·6 = 720.

Может быть, не так очевидно, но это тоже перестановки. С точки зрения математики, вообще та же самая задача. Представьте себе, что расписание составляете вы. Чертите таблицу с пятью строками для пяти уроков («готовите стулья») и вписываете в каждую строку название одного из 5-ти предметов («рассаживаете гостей»). Число перестановок из 5 определяем по формуле
P 5 = 5! = 1·2·3·4·5 = 120.

Читайте также:  Способ регламентации деятельности работников

Пятеро друзей сыграли между собой по одной партии в шахматы. Сколько всего партий было сыграно?

Сколькими способами 10 футбольных команд могут разыграть между собой золотые, бронзовые и серебряные медали?

В шахматной партии 2 равноправных участника (точно также, как в задаче о рукопожатиях). Значит из 5-ти человек формируем группы по 2 без учета порядка следования — сочетания. Определяем число сочетаний из 5 по 2.
С 5 2 = 5!/2!/(5 — 2)! = 5!/2!/3! = 4·5/2 = 10.

На пьедестале почёта находятся 3 команды из 10, и для них очень существенно, кто какое место занял, т.е. порядок следования. Составление групп с учетом порядка следования — размещения. Число размещений определяем по формуле
А 10 3 = 10! / (10 — 3)! = 10!/7! = 8·9·10 = 720.
Другой способ решения с использованием И-правила, как в задаче 2б. Однако, чем больше выборка, тем удобнее сразу применять готовую формулу.

В меню столовой предложено на выбор 2 первых блюда, 6 вторых и 4 третьих блюда. Сколько различных вариантов обеда, состоящего из первого, второго и третьего блюда, можно составить?

Имеется 6 видов овощей. Решено готовить салаты из трёх видов овощей. Сколько различных вариантов салатов можно приготовить?

Выбираем три блюда: первое, И второе, И третье. Едим каждое блюдо отдельно (независимо друг от друга). Следовательно, можем применить правило умножения вариантов (И-правило). Из 2-ух первых блюд одно можно выбрать 2-мя способами, из 6-ти вторых одно можно выбрать 6-тью способами, из 4-ёх третьих одно — 4-мя способами.
2·6·4 = 48.

Чем отличается салат от описанного ранее обеда? Обед едим последовательно, а салат перемешиваем. Выбранные овощи в салате равноправны, очередность их попадания в общее блюдо не важна. Значит наши выборки это сочетания из 6 по 3.
С 6 3 = 6!/3!/(6 — 3)! = 6!/3!/3! = (4·5·6)/(1·2·3) = 20.

В магазине продаются блокноты 7 разных видов и ручки 4 разных видов. Сколькими разными способами можно выбрать покупку из одного блокнота и одной ручки?

В магазине продаются блокноты 7 разных видов и ручки 4 разных видов. Сколькими способами можно выбрать покупку из двух разных блокнотов и одной ручки?

Выбираем одну ручку И один блокнот. Одну ручку из 4-ёх 4-мя способами, один блокнот из 7-ми — 7-ю способами. Применяем правило умножения
4·7 = 28.

Выбираем одну ручку И два блокнота. Снова можем применить правило умножения вариантов. Одну ручку из 4-ёх можем выбрать 4-мя способами, два блокнота из 7-ми — ? способами.
Чтобы определить сколько способов выбора 2-ух блокнов из 7-ми, воспользуемся формулой для числа сочетаний, т.к. для нас несущественно в каком порядке это было сделано.
С 7 2 = 7!/2!/(7 — 2)! = 7!/2!/5! = 6·7/2 = 21.
Теперь применяем правило умножения
4·21 = 84.

На прививку в медпункт отправились 7 друзей. Сколькими разными способами они могут встать в очередь у медицинского кабинета?

Секретный замок состоит из 4 барабанов, на каждом из которых можно выбрать цифры от 0 до 9. Сколько различных вариантов выбора шифра существует?

Число способов встать в очередь равно числу перестановок 7-ми друзей в пределах этой очереди.
P 7 = 7! = 1·2·3·4·5·6·7 = 5040.

Задача такая же, как о гостях и стульях, но обратите внимание, насколько быстро растет число вариантов при увеличении числа переставляемых предметов.

На каждом барабане можно выбрать 1-ну цифру из 10-ти 10-тью способами и независимо от других, поэтому применяем правило умножения:
10·10·10·10 = 10000.

Можно также считать, что нужно разместить 10 цифр на 4-ёх местах с повторениями. В комбинаторике существует раздел «Выборки с повторениями». В данном случае нам нужна формула для размещений. Число размещений с повторениями определяется как n k , где n — количество элементов для выбора (здесь n = 10 цифр), k — объём выборки или количество возможных повторов одного элемента (здесь k = 4, одна и та же цифра может быть установлена на всех четырех барабанах). Таким образом, искомое число вариантов
10 4 = 10000.

Сколько различных трёхзначных чисел можно составить при помощи цифр 4, 7, 9? (Цифры в записи числа не повторяются).

Сколько различных трёхзначных чисел можно составить с помощью цифр 1, 3, 7? (Цифры могут повторяться).

Трёхзначное число состоит из 3-ёх цифр, которые нам даны. Поскольку цифры не могут повторяться, то получать различные числа можно только путем их перестановки. Число перестановок из 3-ёх определяем по формуле
P 3 = 3! = 1·2·3 = 6.

Если цифры могут повторяться, то по разрядам их можно размещать независимо от друг от друга. Значит можем применить правило умножения вариантов (И-правило). Одну цифру из трёх для разряда сотен можно выбрять 3-мя способами, И одну цифру из тех же трёх для разряда десятков — 3-мя способами, И одну из трёх для разряда единиц — 3-мя способами. Общее число вариантов
3·3·3 = 27.

Сколько различных трёхзначных чисел можно составить с помощью цифр 7 и 3?

Сколько различных двузначных чисел можно составить при помощи цифр 4, 7, 9? (Цифры в записи числа не повторяются).

Трёхзначное число из двух цифр неизбежно будет содержать повторения, поэтому можно воспользоваться формулой для числа размещений с повторениями, как в задаче 7b. Здесь количество элементов для выбора n = 2 цифры, количество возможных повторов одного элемента k = 3 раза, цифра в трёхзначном числе может повториться трижды, например, 777. Таким образом, искомое число вариантов
2 3 = 8.

Читайте также:  Способы передачи информации через сеть

Но можно и проще, так как эта задача полностью аналогична задаче 8b. Также используем И-правило, выбирая одну из 2-ух цифр независимо для каждой из трёх позиций,
2·2·2 = 8.

В свою очередь, в задаче 8b можно было воспользоваться формулой для числа размещений с повторениями: 3 3 = 27. Дело в том, что формула как раз выводится с применением И-правила и теми же рассуждениями, какие описаны в решении этих задач.

Классический случай размещений: выбираем из 3-ёх элементов без повторов и размещаем на 2-ух позициях — в разряд десятков и в разряд единиц. Число размещений определяем по формуле
А 3 2 = 3! / (3 — 2)! = 3!/1! = 2·3 = 6.

Сколько нечетных трёхзначных чисел можно составить из цифр 3, 4, 8, 6? (Цифры в записи числа не могут повторяться).

Сколько различных трёхзначных чисел можно составить из цифр 7, 6, 5, 0, если цифры в записи числа не могут повторяться?

Искомое число должно оканчиваться цифрой 3, так как 4, 6 и 8 делятся на 2 без остатка. Поэтому позиция единиц у нас уже занята, и остается разместить 3 цифры на 2-ух позициях — десятков и сотен. Число размещений из 3 по 2 определяем по формуле
А 3 2 = 3! / (3 — 2)! = 3!/1! = 2·3 = 6.

Сначала определим, сколько всего можно составить групп из 4-ёх заданных цифр по 3 с учётом порядка следования и без повторений.
А 4 3 = 4! / (4 — 3)! = 4!/1! = 1·2·3·4/1 = 24.
Но не все эти группы будут трёхзначными числами. Те из них, которые начинаются с цифры 0, по существу, — двузначные числа.
Сколько таких групп? Если на первом месте стоит 0, то на позициях десятков и единиц располагаются 2 цифры из оставшихся 3-ёх. Определяем число размещений из 3 по 2
А 3 2 = 3! / (3 — 2)! = 3!/1! = 2·3 = 6.
Вычитая из общего числа вариантов лишние, получим
24 — 6 = 18.

Сколько четных трёхзначных чисел можно составить из цифр 3, 4, 5, 6? (Цифры в записи числа не могут повторяться).

Сколько четных трёхзначных чисел можно составить из цифр 3, 4, 5, 6? (Цифры в записи числа могут повторяться).

Четными будут числа, оканчивающиеся на 4 ИЛИ на 6. Поэтому подсчитаем количество вариантов, заканчивающихся на одну из этих цифр, а затем воспользуемся правилом сложения (ИЛИ-правилом), чтобы определить общее число вариантов.
Если число оканчивается 4-кой, то на позициях сотен и десятков могут находиться любые 2 цифры из оставшихся 3-ёх. Число размещений из 3 по 2
А 3 2 = 3! / (3 — 2)! = 3!/1! = 2·3 = 6.
Также получается, если число оканчивается 6-кой: А 3 2 = 6.
Общее число вариантов 6 + 6 = 12.

Так же, как в предыдущем случае рассмотрим отдельно числа, заканчивающиеся 4-кой и 6-кой, а затем воспользуемся правилом сложения вариантов.
Пусть позиция единиц у нас занята цифрой 4. В этот раз в позиции десятков может стоять любая из четырёх заданных цифр (4 варианта) И в позиции сотен любая из этих же 4-ёх цифр (4 варианта), всего 4·4 = 16.
Если число оканчивается на 6, теми же рассуждениями получаем еще 16 вариантов.
Всего 16 + 16 = 32.

Сколько различных дробей можно составить с использованием цифр 2, 3, 4? (В числителе и знаменателе не может быть одна и та же цифра.)

Заметим, что не только в числителе и знаменателе не может быть одна и та же цифра, но цифры вообще не могут повторяться, иначе задача не имела бы смысла. В число дробей входили бы, например, 2/3, 2/33, 2/333, 2/3333 и т.п. Таких вариантов бесконечное число.
Далее заметим, что текст «с использованием цифр» может быть понят неоднозначно: с использованием всех трёх или с выбором из них. Здесь рассмотрим более общий случай — с выбором. Выборка не может состоять меньше, чем из двух цифр, чтобы хватило и на числитель, и на знаменатель.
Дроби бывают правильные, в которых знаменатель больше числителя, например, 4/23, и неправильные, в которых числитель больше знаменателя, например, 23/4. Таким образом, возможны такие виды дробей */* ИЛИ **/* ИЛИ */**, где звёздочкой обозначено место для одной из заданных цифр. Подсчитаем число вариантов для каждого вида дроби отдельно, а затем сложим результаты в соответствии с ИЛИ-правилом.
Случай */* определяется числом размещений из 3 по 2, так как используем не все заданные цифры и важен порядок следования (например, сравните 4/3 и 3/4).
А 3 2 = 3! / (3 — 2)! = 3!/1! = 2·3 = 6.
Случай */** определяется числом перестановок из 3, так как для такой дроби нужно использовать все заданные цифры. Дроби будут различаться только расположением цифр по позициям.
P 3 = 3! = 1·2·3 = 6.
Случай **/* аналогичен предыдущему, также определяется числом перестановок из 3. P 3 = 6.
Общее число вариантов 6 + 6 + 6 = 18.

Если вы получили ответ 12, а не 18, обязательно разберитесь почему. Это иначе понятое условие задачи? Забыты неправильные дроби? Ошибка в комбинаторике?

Источник

Оцените статью
Разные способы