- Лекция 2. Замена переменной и и интегрирование по частям в неопределенном интеграле
- Зміст
- Тема 1. Неопределенный интеграл, его свойства
- 1. Первообразная
- 2. Неопределенный интеграл
- 3. Свойства неопределенного интеграла
- 4. Таблица первообразных
- Тема 2. Основные методы интегрирования
- 5. Интегрирование подстановкой (заменой переменной)
- 6. Интегрирование по частям
- 7. Интегрирование простейших рациональных дробей
- Интегрирование методом замены переменной
- Метод замены переменной
- Основная формула замены переменной
- Важное замечание
- Примеры интегрирования заменой переменной
- Линейные подстановки
- Примеры интегрирования линейными подстановками
- Замена переменных в уравнениях (ЕГЭ 2022)
- Замена переменных — коротко о главном
- Степенная замена \( \displaystyle y=<
^>\) - Степенная замена в общем виде
- Дробно-рациональная замена
- Дробно-рациональная замена в общем виде
- Замена многочлена
- Замена многочлена в общем виде
- Подведем итоги
- Важные советы при введении новой переменной
Лекция 2. Замена переменной и и интегрирование по частям в неопределенном интеграле
Сайт: | Навчальний сайт ХНАДУ |
Курс: | Вища Математика (2 семестр) Вишневецький А.Л. |
Книга: | Лекция 2. Замена переменной и и интегрирование по частям в неопределенном интеграле |
Надруковано: | Гість |
Дата: | п’ятниця 19 листопад 2021 23:48 |
Зміст
Тема 1. Неопределенный интеграл, его свойства
1. Первообразная
Пусть f ( x ) – данная функция.
Определение . Функция F ( x ) называется первообразной для f ( x ) , если
Примеры . x 2 – первообразная для 2 x , т.к. ( x 2 )’ = 2 x . Впрочем, x 2 + 1 и x 2 — 5 – тоже первообразные для 2 x , т.к. ( x 2 + 1)’ = 2 x и ( x 2 — 5)’ = 2 x .
Теорема 1. Если F ( x ) – первообразная для f ( x ) , то
1) F ( x ) + С – тоже первообразная для f ( x ) .
2) Любая первообразная для f ( x ) имеет вид F ( x ) + С для некоторого С.
2. Неопределенный интеграл
Определение . Множество всех первообразных функции f ( x ) называется неопределенным интегралом от этой функции и обозначается так:
Здесь f ( x) dx – подынтегральное выражение, f ( x ) – подынтегральная функция, x – переменная интегрирования.
Если функция непрерывна на некотором отрезке, то на этом отрезке существует её неопределенный интеграл.
Операции нахождения дифференциала и неопределенного интеграла – взаимно обратные:
3. Свойства неопределенного интеграла
Формул «интеграл от произведения» и «интеграл от частного» функций нет.
4. Таблица первообразных
Таблица проверяется с помощью (1). Формулы № 10, 12, 14 есть обобщение формул № 9, 11, 13. В формулах № 10, 12, 14, 15 a ≠ 0 .
Полная запись формулы №1:
Тема 2. Основные методы интегрирования
5. Интегрирование подстановкой (заменой переменной)
Суть метода: путем введения новой переменной интегрирования (т.е. подстановки) свести данный интеграл к более простому (желательно – к табличному).
Начнем с формулы замены. Надо найти интеграл
Сделаем подстановку φ(t) = x , где φ(t) — функция, имеющая непрерывную производную. По определению дифференциала, dx = φ'(t)dt . Подставляем в (1):
– формула замены переменной в неопределенном интеграле. После ее применения и вычисления полученного интеграла нужно вернуться к исходной переменной. Формулу (2) применяют как «слева направо», так и «справа налево». Общих методов подбора подстановок не существует.
6. Интегрирование по частям
Теорема . Если функции u = u(x) , ν = ν (x) имеют непрерывные производные, то
Док-во . Интегрируя равенство d(uv) = udv + vdu , получим uv = ∫ udv — ∫ vdu , т.е. (5)
Формула (5) сводит нахождение ∫ udv к нахождению ∫ vdu , поэтому ее применяют тогда, когда последний интеграл не сложнее первого. Для применения этой формулы подынтегральное выражение представляют как произведение двух сомножителей, один из которых обозначают u , другой dv . Затем u дифференцируют (находят du ), а dv интегрируют (находят v ).
Укажем способ выбора u и dv в двух типичных случаях. Пусть P(x) – многочлен.
Формулу (5) можно применять повторно. Например, в случае а) это делают n раз, где n – степень многочлена P(x) .
7. Интегрирование простейших рациональных дробей
Простейшие рациональные дроби – это дроби:
1 рода: ( k N ) и 2 рода: (дискриминант знаменателя D n = 1 так:
- Заменить
- Разложить интеграл в сумму вида
К первому интегралу применить формулу (4), а второй – табличный (арктангенс).
Источник
Интегрирование методом замены переменной
Метод замены переменной
С помощью замены переменной можно вычислить простые интегралы и, в некоторых случаях, упростить вычисление более сложных.
Метод замены переменной заключается в том, что мы от исходной переменной интегрирования, пусть это будет x , переходим к другой переменной, которую обозначим как t . При этом мы считаем, что переменные x и t связаны некоторым соотношением x = x ( t ) , или t = t ( x ) . Например, x = ln t , x = sin t , t = 2 x + 1 , и т.п. Нашей задачей является подобрать такую зависимость между x и t , чтобы исходный интеграл либо свелся к табличному, либо стал более простым.
Основная формула замены переменной
Рассмотрим выражение, которое стоит под знаком интеграла. Оно состоит из произведения подынтегральной функции, которую мы обозначим как f ( x ) и дифференциала dx : . Пусть мы переходим к новой переменной t , выбрав некоторое соотношение x = x ( t ) . Тогда мы должны выразить функцию f ( x ) и дифференциал dx через переменную t .
Чтобы выразить подынтегральную функцию f ( x ) через переменную t , нужно просто подставить вместо переменной x выбранное соотношение x = x ( t ) .
Преобразование дифференциала выполняется так:
.
То есть дифференциал dx равен произведению производной x по t на дифференциал dt .
На практике, чаще всего встречается случай, в котором мы выполняем замену, выбирая новую переменную как функцию от старой: t = t ( x ) . Если мы догадались, что подынтегральную функцию можно представить в виде
,
где t′ ( x ) – это производная t по x , то
.
Итак, основную формулу замены переменной можно представить в двух видах.
(1) ,
где x – это функция от t .
(2) ,
где t – это функция от x .
Важное замечание
В таблицах интегралов переменная интегрирования, чаще всего, обозначается как x . Однако стоит учесть, что переменная интегрирования может обозначаться любой буквой. И более того, в качестве переменной интегрирования может быть какое-либо выражение.
В качестве примера рассмотрим табличный интеграл
.
Здесь x можно заменить любой другой переменной или функцией от переменной. Вот примеры возможных вариантов:
;
;
.
В последнем примере нужно учитывать, что при переходе к переменной интегрирования x , дифференциал преобразуется следующим образом:
.
Тогда
.
В этом примере заключена суть интегрирования подстановкой. То есть мы должны догадаться, что
.
После чего интеграл сводится к табличному.
.
Можно вычислить этот интеграл с помощью замены переменной, применяя формулу (2). Положим t = x 2 + x . Тогда
;
;
.
Примеры интегрирования заменой переменной
1) Вычислим интеграл
.
Замечаем, что (sin x )′ = cos x . Тогда
.
Здесь мы применили подстановку t = sin x .
2) Вычислим интеграл
.
Замечаем, что . Тогда
.
Здесь мы выполнили интегрирование заменой переменной t = arctg x .
3) Проинтегрируем
.
Замечаем, что . Тогда
. Здесь, при интегрировании, произведена замена переменной t = x 2 + 1 .
Линейные подстановки
Пожалуй, самыми распространенными являются линейные подстановки. Это замена переменной вида
t = ax + b ,
где a и b – постоянные. При такой замене дифференциалы связаны соотношением
.
Примеры интегрирования линейными подстановками
B) Найти интеграл
.
Решение.
Воспользуемся свойствами показательной функции.
.
ln 2 – это постоянная. Вычисляем интеграл.
.
C) Вычислить интеграл
.
Решение.
Приведем квадратный многочлен в знаменателе дроби к сумме квадратов.
.
Вычисляем интеграл.
.
D) Найти интеграл
.
Решение.
Преобразуем многочлен под корнем.
.
Интегрируем, применяя метод замены переменной .
.
Ранее мы получили формулу
.
Отсюда
.
Подставив это выражение, получим окончательный ответ.
Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.
Автор: Олег Одинцов . Опубликовано: 06-09-2015
Источник
Замена переменных в уравнениях (ЕГЭ 2022)
Метод замены переменных… Что это за зверь?
Это хитрый способ сначала сделать сложное уравнение простым (с помощью замены переменных) и потом быстро с ним разделаться.
Есть три способа замены переменной.
Читай эту статью — ты все поймешь!
Замена переменных — коротко о главном
Определение:
Замена переменных – метод решения сложных уравнений и неравенств, который позволяет упростить исходное выражение и привести его к стандартному виду.
Замена переменных – это введение нового неизвестного, относительно которого уравнение или неравенство имеет более простой вид.
Виды замены переменной:
Степенная замена: за \( \displaystyle t\) принимается какое-то неизвестное, возведенное в степень: \( \displaystyle t=<
Дробно-рациональная замена: за \( \displaystyle t\) принимается какое-либо отношение, содержащее неизвестную переменную: \( \displaystyle t=\frac<<
_ _ \) – многочлены степеней n и m, соответственно. Замена многочлена: за \( \displaystyle t\) принимается целое выражение, содержащее неизвестное: \( \displaystyle t=< _ _ _ \) – многочлен степени \( \displaystyle n\). Обратная замена: После решения упрощенного уравнения/неравенства, необходимо произвести обратную замену. Решение примера №1 Допустим, у нас есть выражение: \( \displaystyle < Подумай, к какому виду мы можем его привести, чтобы при расчетах легко найти корни? Правильно, данное уравнение необходимо привести к квадратному виду. Введем новую переменную \( \displaystyle t=< Метод замены переменной подразумевает, чтобы старой переменной \( \displaystyle x\) не оставалось – в выражении должна остаться только одна переменная – \( \displaystyle t\). Наше выражение приобретет вид: \( \displaystyle < \( \displaystyle \text Нашли ли мы корни исходного уравнения? Правильно, нет. На этом шаге не следует забывать, что нам необходимо найти значения переменной \( \displaystyle x\), а мы нашли только \( \displaystyle t\). Следовательно, нам необходимо вернуться к исходному выражению, то есть сделать обратную замену — вместо \( \displaystyle t\) ставим \( \displaystyle < Решаем два новых простых уравнения, не забывая область допустимых значений! При \( \displaystyle < \( \displaystyle < А что у нас будет при \( \displaystyle < Правильно. Решений данного уравнения нет, так как квадрат любого числа – число положительное, а в нашем случае – отрицательное, соответственно, при \( \displaystyle < В ответ следует записать необходимые нам корни, то есть \( \displaystyle x\), которые существуют: Ответ: \( \displaystyle 3\);\( \displaystyle -3\) Точно таким же образом необходимо действовать при решении неравенств. Выполняя замену переменных, необходимо помнить два простых правила: Решение примера №2 Попробуй самостоятельно применить метод замены переменной в уравнении \( \displaystyle 3< Подумай, к какому виду мы можем его привести, чтобы при расчетах легко найти корни? Проверь свое решение: Введем новую переменную \( \displaystyle t=< Наше выражение приобретет вид: \( \displaystyle 3< Возвращаемся к исходному выражению, то есть делаем обратную замену: вместо \( \displaystyle t\) ставим \( \displaystyle < Оба значения \( \displaystyle < При \( \displaystyle < Ответ: \( \displaystyle \sqrt[3]<2>;\sqrt[3]<\frac<1><3>>\) Например, с помощью замены \( \displaystyle t=< В неравенствах все аналогично. Например, в неравенстве \( \displaystyle a< Дробно-рациональная замена – \( \displaystyle y=\frac<< _ \) многочлены степеней n и m соответственно. При этом необходимо помнить, что область допустимых значений (ОДЗ) данного уравнения \( \displaystyle < Решение примера №3 Допустим, у нас есть уравнение: Так как на ноль делить нельзя, то в данном случае ОДЗ будет: \( \displaystyle x\ne 0\) Введем новую переменную \( \displaystyle t\). Пусть \( \displaystyle t=x+\frac<3> Сравни, что дает возведение \( \displaystyle t\) в квадрат, с первой сгруппированной скобкой в нашем примере. Что ты видишь? Правильно. Разница между тем, что у нас в примере, и тем, что дает нам возведение в квадрат, заключается в удвоенном произведении слагаемых. Соответственно, его и следует вычесть, переписывая наш пример с переменной \( \displaystyle t\). \( \displaystyle 2 В итоге мы получаем следующее выражение: \( \displaystyle < Решаем получившееся уравнение: Как мы помним \( t\), не является конечным решением уравнения. Возвращаемся к изначальной переменной: Приводя к общему знаменателю \( \displaystyle x\), мы приходим к совокупности 2-x квадратных уравнений: Решим первое квадратное уравнение: На этой стадии не забываем про ОДЗ. Мы должны посмотреть, удовлетворяют ли найденные корни области допустимых значений? Если какой-то корень не удовлетворяет ОДЗ – он не включается в конечное решение уравнения. Решим второе квадратное уравнение: Снова смотрим, удовлетворяют ли полученные корни ОДЗ? Далее записываем конечный ответ. Ответ: \( \displaystyle \frac<5+\sqrt<13>><2>;\text< >\!\! У тебя получился такой же? Попробуй решить все с начала до конца самостоятельно. Решение пример №4 Какой ответ у тебя получился? У меня \( \displaystyle 1\) и \( \displaystyle 3\). Сравним ход решения: Пусть \( \displaystyle t=\frac<1><<<\left( Приведем слагаемые к общему знаменателю: Не забываем про ОДЗ — \( \displaystyle t\ne 0\). Решаем квадратное уравнение: Как ты помнишь, \( \displaystyle t\) не является конечным решением уравнения. Возвращаемся к изначальной переменной: Решим первое уравнение: Решением первого уравнения являются корни \( \displaystyle 1\) и \( \displaystyle 3\). Решим второе уравнение: Решения не существует. Подумай, почему? Правильно! \( \displaystyle \frac<1><<<\left( Ответ: \( \displaystyle 1\); \( \displaystyle 3\) \( \displaystyle < _ Например, при решении возвратных уравнений, то есть уравнений вида обычно используется замена \( \displaystyle t=x+\frac<1> Сейчас покажу, как это работает. Легко проверить, что \( \displaystyle x=0\) не является корнем этого уравнения: ведь если подставить \( \displaystyle x=0\) в уравнение, получим \( \displaystyle a=0\), что противоречит условию. Разделим уравнение на \( \displaystyle < Теперь делаем замену: \( \displaystyle t=x+\frac<1> Прелесть ее в том, что при возведении в квадрат в удвоенном произведении слагаемых сокращается x: Вернемся к нашему уравнению: \( \displaystyle \begin Теперь достаточно решить квадратное уравнение и сделать обратную замену. Замена многочлена \( \displaystyle y=< _ _ Здесь \( \displaystyle < _ \) — многочлена степени \( \displaystyle n\), например, выражение \( \displaystyle 12< Решение примера №4 Применим метод замены переменной. Как ты думаешь, что нужно принять за \( \displaystyle t\)? Уравнение приобретает вид: Производим обратную замену переменных: Решим первое уравнение: Решим второе уравнение: \( \displaystyle << Решил? Теперь проверим с тобой основные моменты. За \( \displaystyle t\) нужно взять \( \displaystyle 2<< Мы получаем выражение: \( \displaystyle \text Решая квадратное уравнение, мы получаем, что \( t\) имеет два корня: \( \displaystyle -2\) и \( \displaystyle 1\). Далее делаем обратную замену и решаем оба квадратных уравнения. Решением первого квадратного уравнения являются числа \( \displaystyle 1\) и \( \displaystyle 3,5\) Решением второго квадратного уравнения — числа \( \displaystyle 0,5\) и \( \displaystyle 4\). Ответ: \( \displaystyle 0,5\); \( \displaystyle 1\); \( \displaystyle 3,5\); \( \displaystyle 4\) \( \displaystyle t=< _ _ Здесь \( \displaystyle < _ (например, выражение \( \displaystyle 4< _<4>>\left( x \right)\)). Чаще всего используется замена квадратного трехчлена: \( \displaystyle t=a< Метод замены переменной имеет \( \displaystyle 3\) основных типа замен переменных в уравнениях и неравенствах: Степенная замена, когда за \( \displaystyle t\) мы принимаем какое-то неизвестное, возведенное в степень. Замена многочлена, когда за \( \displaystyle t\) мы принимаем целое выражение, содержащее неизвестное. Дробно-рациональная замена, когда за \( \displaystyle t\) мы принимаем какое-либо отношение, содержащее неизвестную переменную. Разбор 3 примеров на замену переменных Пример 7. \( \displaystyle \left( << Решение примера №6 Пусть \( \displaystyle \text Так как \( \displaystyle \text Ответ: \( \displaystyle -2;\text< >1\) Решение примера №7 Пусть \( \displaystyle \text \( \displaystyle <<\text Решение: Это дробно-рациональное уравнение (повтори «Рациональные уравнения»), но решать его обычным методом (приведение к общему знаменателю) неудобно, так как мы получим уравнение \( \displaystyle 6\) степени, поэтому применяется замена переменных. Все станет намного проще после замены: \( \displaystyle t=< Теперь делаем обратную замену: Ответ: \( \displaystyle \sqrt[3]<3>\); \( \displaystyle \sqrt[3]<4>\). Решение примера 10 (замена многочлена) Решите уравнение \( \displaystyle \left( < Решение: И опять используется замена переменных \( \displaystyle t=< \( \displaystyle t\cdot \left( t+1 \right)=12\text< >\Rightarrow \text< >< Корни этого квадратного уравнения: \( \displaystyle t=-4\) и \( \displaystyle t=3\). Имеем два случая. Сделаем обратную замену для каждого из них: \( \displaystyle t=-4\text< >\Rightarrow \text< >< \( \displaystyle D=<<5>^<2>>-4\cdot 13=-17 \( \displaystyle x\in \left[ -\frac<7><2>;-\frac<1> <2>\right]\cup \left( 0;+\infty \right)\) \( \displaystyle y 0\) при всех \( \displaystyle x\), так как \( \displaystyle D=64-4\cdot 4\cdot 7=-48 0\) при всех \( \displaystyle x\), так как \( \displaystyle D=81-4\cdot 4\cdot 7=-31 0\) Источник_
_
Степенная замена \( \displaystyle y=<
Степенная замена в общем виде
Дробно-рациональная замена
_
_
Дробно-рациональная замена в общем виде
_
Замена многочлена
Замена многочлена в общем виде
Подведем итоги
Важные советы при введении новой переменной