Замена переменной или способ подстановки

Содержание
  1. Лекция 2. Замена переменной и и интегрирование по частям в неопределенном интеграле
  2. Зміст
  3. Тема 1. Неопределенный интеграл, его свойства
  4. 1. Первообразная
  5. 2. Неопределенный интеграл
  6. 3. Свойства неопределенного интеграла
  7. 4. Таблица первообразных
  8. Тема 2. Основные методы интегрирования
  9. 5. Интегрирование подстановкой (заменой переменной)
  10. 6. Интегрирование по частям
  11. 7. Интегрирование простейших рациональных дробей
  12. Интегрирование методом замены переменной
  13. Метод замены переменной
  14. Основная формула замены переменной
  15. Важное замечание
  16. Примеры интегрирования заменой переменной
  17. Линейные подстановки
  18. Примеры интегрирования линейными подстановками
  19. Замена переменных в уравнениях (ЕГЭ 2022)
  20. Замена переменных — коротко о главном
  21. Степенная замена \( \displaystyle y=<^>\)
  22. Степенная замена в общем виде
  23. Дробно-рациональная замена
  24. Дробно-рациональная замена в общем виде
  25. Замена многочлена
  26. Замена многочлена в общем виде
  27. Подведем итоги
  28. Важные советы при введении новой переменной

Лекция 2. Замена переменной и и интегрирование по частям в неопределенном интеграле

Сайт: Навчальний сайт ХНАДУ
Курс: Вища Математика (2 семестр) Вишневецький А.Л.
Книга: Лекция 2. Замена переменной и и интегрирование по частям в неопределенном интеграле
Надруковано: Гість
Дата: п’ятниця 19 листопад 2021 23:48

Зміст

Тема 1. Неопределенный интеграл, его свойства

1. Первообразная

Пусть f ( x ) – данная функция.

Определение . Функция F ( x ) называется первообразной для f ( x ) , если

Примеры . x 2 – первообразная для 2 x , т.к. ( x 2 )’ = 2 x . Впрочем, x 2 + 1 и x 2 — 5 – тоже первообразные для 2 x , т.к. ( x 2 + 1)’ = 2 x и ( x 2 — 5)’ = 2 x .

Теорема 1. Если F ( x ) – первообразная для f ( x ) , то

1) F ( x ) + С – тоже первообразная для f ( x ) .

2) Любая первообразная для f ( x ) имеет вид F ( x ) + С для некоторого С.

2. Неопределенный интеграл

Определение . Множество всех первообразных функции f ( x ) называется неопределенным интегралом от этой функции и обозначается так:

Здесь f ( x) dxподынтегральное выражение, f ( x ) – подынтегральная функция, x переменная интегрирования.

Если функция непрерывна на некотором отрезке, то на этом отрезке существует её неопределенный интеграл.

Операции нахождения дифференциала и неопределенного интеграла – взаимно обратные:

3. Свойства неопределенного интеграла

Формул «интеграл от произведения» и «интеграл от частного» функций нет.

4. Таблица первообразных

Таблица проверяется с помощью (1). Формулы № 10, 12, 14 есть обобщение формул № 9, 11, 13. В формулах № 10, 12, 14, 15 a ≠ 0 .

Полная запись формулы №1:

Тема 2. Основные методы интегрирования

5. Интегрирование подстановкой (заменой переменной)

Суть метода: путем введения новой переменной интегрирования (т.е. подста­новки) свести данный интеграл к более простому (желательно – к табличному).

Начнем с формулы замены. Надо найти интеграл

Сделаем подстановку φ(t) = x , где φ(t) — функция, имеющая непрерывную производную. По определению дифференциала, dx = φ'(t)dt . Подставляем в (1):

– формула замены переменной в неопределенном интеграле. После ее примене­ния и вычисления полученного интеграла нужно вернуться к исходной перемен­ной. Формулу (2) применяют как «слева направо», так и «справа налево». Общих методов подбора подстановок не существует.

6. Интегрирование по частям

Теорема . Если функции u = u(x) , ν = ν (x) имеют непрерывные производные, то

Док-во . Интегрируя равенство d(uv) = udv + vdu , получим uv = ∫ udv — ∫ vdu , т.е. (5)

Формула (5) сводит нахождение ∫ udv к нахождению ∫ vdu , поэтому ее приме­няют тогда, когда последний интеграл не сложнее первого. Для применения этой формулы подынтегральное выражение представляют как произведение двух сомножителей, один из которых обозначают u , другой dv . Затем u дифференцируют (находят du ), а dv интегрируют (находят v ).

Укажем способ выбора u и dv в двух типичных случаях. Пусть P(x) – многочлен.

Формулу (5) можно применять повторно. Например, в случае а) это делают n раз, где n – степень многочлена P(x) .

7. Интегрирование простейших рациональных дробей

Простейшие рациональные дроби – это дроби:

1 рода: ( k N ) и 2 рода: (дискриминант знаменателя D n = 1 так:

  • Заменить
  • Разложить интеграл в сумму вида

К первому интегралу применить формулу (4), а второй – табличный (арктангенс).

Источник

Интегрирование методом замены переменной

Метод замены переменной

С помощью замены переменной можно вычислить простые интегралы и, в некоторых случаях, упростить вычисление более сложных.

Метод замены переменной заключается в том, что мы от исходной переменной интегрирования, пусть это будет x , переходим к другой переменной, которую обозначим как t . При этом мы считаем, что переменные x и t связаны некоторым соотношением x = x ( t ) , или t = t ( x ) . Например, x = ln t , x = sin t , t = 2 x + 1 , и т.п. Нашей задачей является подобрать такую зависимость между x и t , чтобы исходный интеграл либо свелся к табличному, либо стал более простым.

Основная формула замены переменной

Рассмотрим выражение, которое стоит под знаком интеграла. Оно состоит из произведения подынтегральной функции, которую мы обозначим как f ( x ) и дифференциала dx : . Пусть мы переходим к новой переменной t , выбрав некоторое соотношение x = x ( t ) . Тогда мы должны выразить функцию f ( x ) и дифференциал dx через переменную t .

Чтобы выразить подынтегральную функцию f ( x ) через переменную t , нужно просто подставить вместо переменной x выбранное соотношение x = x ( t ) .

Преобразование дифференциала выполняется так:
.
То есть дифференциал dx равен произведению производной x по t на дифференциал dt .

На практике, чаще всего встречается случай, в котором мы выполняем замену, выбирая новую переменную как функцию от старой: t = t ( x ) . Если мы догадались, что подынтегральную функцию можно представить в виде
,
где t′ ( x ) – это производная t по x , то
.

Итак, основную формулу замены переменной можно представить в двух видах.
(1) ,
где x – это функция от t .
(2) ,
где t – это функция от x .

Важное замечание

В таблицах интегралов переменная интегрирования, чаще всего, обозначается как x . Однако стоит учесть, что переменная интегрирования может обозначаться любой буквой. И более того, в качестве переменной интегрирования может быть какое-либо выражение.

В качестве примера рассмотрим табличный интеграл
.

Здесь x можно заменить любой другой переменной или функцией от переменной. Вот примеры возможных вариантов:
;
;
.

В последнем примере нужно учитывать, что при переходе к переменной интегрирования x , дифференциал преобразуется следующим образом:
.
Тогда
.

В этом примере заключена суть интегрирования подстановкой. То есть мы должны догадаться, что
.
После чего интеграл сводится к табличному.
.

Можно вычислить этот интеграл с помощью замены переменной, применяя формулу (2). Положим t = x 2 + x . Тогда
;
;

.

Примеры интегрирования заменой переменной

1) Вычислим интеграл
.
Замечаем, что (sin x )′ = cos x . Тогда

.
Здесь мы применили подстановку t = sin x .

2) Вычислим интеграл
.
Замечаем, что . Тогда

.
Здесь мы выполнили интегрирование заменой переменной t = arctg x .

3) Проинтегрируем
.
Замечаем, что . Тогда

. Здесь, при интегрировании, произведена замена переменной t = x 2 + 1 .

Линейные подстановки

Пожалуй, самыми распространенными являются линейные подстановки. Это замена переменной вида
t = ax + b ,
где a и b – постоянные. При такой замене дифференциалы связаны соотношением
.

Примеры интегрирования линейными подстановками

B) Найти интеграл
.
Решение.
Воспользуемся свойствами показательной функции.
.
ln 2 – это постоянная. Вычисляем интеграл.

.

C) Вычислить интеграл
.
Решение.
Приведем квадратный многочлен в знаменателе дроби к сумме квадратов.
.
Вычисляем интеграл.

.

D) Найти интеграл
.
Решение.
Преобразуем многочлен под корнем.

.
Интегрируем, применяя метод замены переменной .

.
Ранее мы получили формулу
.
Отсюда
.
Подставив это выражение, получим окончательный ответ.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 06-09-2015

Источник

Замена переменных в уравнениях (ЕГЭ 2022)

Метод замены переменных… Что это за зверь?

Это хитрый способ сначала сделать сложное уравнение простым (с помощью замены переменных) и потом быстро с ним разделаться.

Есть три способа замены переменной.

Читай эту статью — ты все поймешь!

Замена переменных — коротко о главном

Определение:

Замена переменных – метод решения сложных уравнений и неравенств, который позволяет упростить исходное выражение и привести его к стандартному виду.

Замена переменных – это введение нового неизвестного, относительно которого уравнение или неравенство имеет более простой вид.

Виды замены переменной:

Степенная замена: за \( \displaystyle t\) принимается какое-то неизвестное, возведенное в степень: \( \displaystyle t=<^>\).

Дробно-рациональная замена: за \( \displaystyle t\) принимается какое-либо отношение, содержащее неизвестную переменную: \( \displaystyle t=\frac<<

_>\left( x \right)><<_>\left( x \right)>\), где \( \displaystyle <

_>\left( x \right)\) и \( \displaystyle <_>\left( x \right)

\) – многочлены степеней n и m, соответственно.

Замена многочлена: за \( \displaystyle t\) принимается целое выражение, содержащее неизвестное: \( \displaystyle t=<

_>\left( x \right)\) или \( \displaystyle t=\sqrt<<

_>\left( x \right)>\), где \( \displaystyle <

_>\left( x \right)

\) – многочлен степени \( \displaystyle n\).

Обратная замена:

После решения упрощенного уравнения/неравенства, необходимо произвести обратную замену.

Степенная замена \( \displaystyle y=<^>\)

Решение примера №1

Допустим, у нас есть выражение: \( \displaystyle <^<4>>-5<^<2>>-36=0\).

Подумай, к какому виду мы можем его привести, чтобы при расчетах легко найти корни? Правильно, данное уравнение необходимо привести к квадратному виду.

Введем новую переменную \( \displaystyle t=<^<2>>\).

Метод замены переменной подразумевает, чтобы старой переменной \( \displaystyle x\) не оставалось – в выражении должна остаться только одна переменная – \( \displaystyle t\).

Наше выражение приобретет вид:

\( \displaystyle <^<2>>-5t-36=0\) – обычное квадратное уравнение

\( \displaystyle \text=<<\text>^<2>>-4\text\) \( \displaystyle \text=25-4\cdot 1\cdot \left( -36 \right)=25+144=169\) \( \displaystyle \sqrt<\text>=\sqrt<169>=13\) \( \displaystyle <_<1,2>>=\frac<-b\pm \sqrt><2a>\) \( \displaystyle <_<1>>=\frac<5+13><2>=9\) \( \displaystyle <_<2>>=\frac<5-13><2>=-4\)

Нашли ли мы корни исходного уравнения? Правильно, нет.

На этом шаге не следует забывать, что нам необходимо найти значения переменной \( \displaystyle x\), а мы нашли только \( \displaystyle t\).

Следовательно, нам необходимо вернуться к исходному выражению, то есть сделать обратную замену — вместо \( \displaystyle t\) ставим \( \displaystyle <^<2>>\).

Решаем два новых простых уравнения, не забывая область допустимых значений!

При \( \displaystyle <^<2>>=9\) у нас будет два корня:

\( \displaystyle <_<1>>=3\) \( \displaystyle <_<2>>=-3\)

А что у нас будет при \( \displaystyle <^<2>>=-4\)?

Правильно. Решений данного уравнения нет, так как квадрат любого числа – число положительное, а в нашем случае – отрицательное, соответственно, при \( \displaystyle <^<2>>=-4\) у нас будет пустое множество (решения нет).

В ответ следует записать необходимые нам корни, то есть \( \displaystyle x\), которые существуют:

Ответ: \( \displaystyle 3\);\( \displaystyle -3\)

Точно таким же образом необходимо действовать при решении неравенств.

Выполняя замену переменных, необходимо помнить два простых правила:

  • Замену переменных нужно делать сразу и при первой же возможности.
  • Уравнение (неравенство) относительно новой переменной необходимо решать до конца, и лишь затем возвращаться к старому неизвестному.
  • При возврате к изначальному неизвестному (да и вообще на протяжении всего решения), не забывай проверять корни на ОДЗ.

Решение примера №2

Попробуй самостоятельно применить метод замены переменной в уравнении \( \displaystyle 3<^<6>>-7<^<3>>+2=0\).

Подумай, к какому виду мы можем его привести, чтобы при расчетах легко найти корни?

Проверь свое решение:

Введем новую переменную \( \displaystyle t=<^<3>>\).

Наше выражение приобретет вид:

\( \displaystyle 3<^<2>>-7t+2=0\) – обычное квадратное уравнение

Возвращаемся к исходному выражению, то есть делаем обратную замену: вместо \( \displaystyle t\) ставим \( \displaystyle <^<3>>\)

Оба значения \( \displaystyle <^<3>>\) имеют право на существование. Решаем два получившихся уравнения:

При \( \displaystyle <^<3>>=2\Rightarrow x=\sqrt[3]<2>\)

Ответ: \( \displaystyle \sqrt[3]<2>;\sqrt[3]<\frac<1><3>>\)

Степенная замена в общем виде

Например, с помощью замены \( \displaystyle t=<^<2>>\) биквадратное уравнение \( \displaystyle a<^<4>>+b<^<2>>+c=0,\text< >a\ne 0\) приводится к квадратному: \( \displaystyle a<^<2>>+bt+c=0\).

В неравенствах все аналогично.

Например, в неравенстве \( \displaystyle a<^<6>>+b<^<3>>+c\ge \text<0>\) сделаем замену \( \displaystyle t=<^<3>>\), и получим квадратное неравенство: \( \displaystyle a<^<2>>+bt+c\ge \text<0>\).

Дробно-рациональная замена

Дробно-рациональная замена – \( \displaystyle y=\frac<<

_>\left( x \right)><<_>\left( x \right)>,

\) многочлены степеней n и m соответственно.

При этом необходимо помнить, что область допустимых значений (ОДЗ) данного уравнения \( \displaystyle <_>\left( x \right)\ne 0\) (так как на ноль делить нельзя).

Решение примера №3

Допустим, у нас есть уравнение:

Так как на ноль делить нельзя, то в данном случае ОДЗ будет: \( \displaystyle x\ne 0\)

Введем новую переменную \( \displaystyle t\).

Пусть \( \displaystyle t=x+\frac<3>\), тогда

Сравни, что дает возведение \( \displaystyle t\) в квадрат, с первой сгруппированной скобкой в нашем примере. Что ты видишь?

Правильно. Разница между тем, что у нас в примере, и тем, что дает нам возведение в квадрат, заключается в удвоенном произведении слагаемых.

Соответственно, его и следует вычесть, переписывая наш пример с переменной \( \displaystyle t\).

\( \displaystyle 2\cdot \frac<3><>=6\)

В итоге мы получаем следующее выражение:

\( \displaystyle <^<2>>-6-t-14=0\) – обычное квадратное уравнение.

Решаем получившееся уравнение:

Как мы помним \( t\), не является конечным решением уравнения. Возвращаемся к изначальной переменной:

Приводя к общему знаменателю \( \displaystyle x\), мы приходим к совокупности 2-x квадратных уравнений:

Решим первое квадратное уравнение:

На этой стадии не забываем про ОДЗ.

Мы должны посмотреть, удовлетворяют ли найденные корни области допустимых значений? Если какой-то корень не удовлетворяет ОДЗ – он не включается в конечное решение уравнения.

Решим второе квадратное уравнение:

Снова смотрим, удовлетворяют ли полученные корни ОДЗ? Далее записываем конечный ответ.

Ответ: \( \displaystyle \frac<5+\sqrt<13>><2>;\text< >\!\!

У тебя получился такой же?

Попробуй решить все с начала до конца самостоятельно.

Решение пример №4

Какой ответ у тебя получился? У меня \( \displaystyle 1\) и \( \displaystyle 3\).

Сравним ход решения:

Пусть \( \displaystyle t=\frac<1><<<\left( -2 \right)>^<2>>>\), тогда выражение приобретает вид:

Приведем слагаемые к общему знаменателю:

Не забываем про ОДЗ — \( \displaystyle t\ne 0\).

Решаем квадратное уравнение:

Как ты помнишь, \( \displaystyle t\) не является конечным решением уравнения. Возвращаемся к изначальной переменной:

Решим первое уравнение:

Решением первого уравнения являются корни \( \displaystyle 1\) и \( \displaystyle 3\).

Решим второе уравнение:

Решения не существует. Подумай, почему? Правильно! \( \displaystyle \frac<1><<<\left( -2 \right)>^<2>>>=-\frac<1><5>\) – число положительное, \( \displaystyle <<\left( -2 \right)>^<2>>\) — тоже всегда положительно, следовательно, при делении положительного числа на положительное никак не может получиться отрицательное!

Ответ: \( \displaystyle 1\); \( \displaystyle 3\)

Дробно-рациональная замена в общем виде

\( \displaystyle <

_>\left( x \right)\) и \( \displaystyle <_>\left( x \right)\) − многочлены степеней \( \displaystyle n\) и \( \displaystyle m\) соответственно.

Например, при решении возвратных уравнений, то есть уравнений вида

обычно используется замена \( \displaystyle t=x+\frac<1>\).

Сейчас покажу, как это работает.

Легко проверить, что \( \displaystyle x=0\) не является корнем этого уравнения: ведь если подставить \( \displaystyle x=0\) в уравнение, получим \( \displaystyle a=0\), что противоречит условию.

Разделим уравнение на \( \displaystyle <^<2>>\ne 0\):

Теперь делаем замену: \( \displaystyle t=x+\frac<1>\).

Прелесть ее в том, что при возведении в квадрат в удвоенном произведении слагаемых сокращается x:

Вернемся к нашему уравнению:

\( \displaystyle \begina\left( <^<2>>+\frac<1><<^<2>>> \right)+b\left( x+\frac<1> \right)+c=0\text< >\Leftrightarrow \text< >a\left( <^<2>>-2 \right)+bt+c=0\text< >\Leftrightarrow \\a<^<2>>+bt+c-2a=0\end\)

Теперь достаточно решить квадратное уравнение и сделать обратную замену.

Замена многочлена

Замена многочлена \( \displaystyle y=<

_>\left( x \right)\) или \( \displaystyle y=\sqrt<<

_>\left( x \right)>\).

Здесь \( \displaystyle <

_>\left( x \right)

\) — многочлена степени \( \displaystyle n\), например, выражение \( \displaystyle 12<^<3>>+2<^<2>>-3x+1\) – многочлен степени \( \displaystyle 3\).

Решение примера №4

Применим метод замены переменной. Как ты думаешь, что нужно принять за \( \displaystyle t\)?

Уравнение приобретает вид:

Производим обратную замену переменных:

Решим первое уравнение:

Решим второе уравнение:

\( \displaystyle <<>^<2>>-4+8=0\) \( \displaystyle \text=<<>^<2>>-4\) \( \displaystyle \text=16-4\cdot 8=16-32=-16\)

Решил? Теперь проверим с тобой основные моменты.

За \( \displaystyle t\) нужно взять \( \displaystyle 2<<>^<2>>-9+5\).

Мы получаем выражение:

\( \displaystyle \text\cdot \left( \text+1 \right)=2\)

Решая квадратное уравнение, мы получаем, что \( t\) имеет два корня: \( \displaystyle -2\) и \( \displaystyle 1\).

Далее делаем обратную замену и решаем оба квадратных уравнения.

Решением первого квадратного уравнения являются числа \( \displaystyle 1\) и \( \displaystyle 3,5\)

Решением второго квадратного уравнения — числа \( \displaystyle 0,5\) и \( \displaystyle 4\).

Ответ: \( \displaystyle 0,5\); \( \displaystyle 1\); \( \displaystyle 3,5\); \( \displaystyle 4\)

Замена многочлена в общем виде

\( \displaystyle t=<

_>\left( x \right)\) или \( \displaystyle t=\sqrt<<

_>\left( x \right)>\).

Здесь \( \displaystyle <

_>\left( x \right)\) − многочлен степени \( \displaystyle n\), т.е. выражение вида

(например, выражение \( \displaystyle 4<^<4>>+2<^<3>>-3x+1\) – многочлен степени \( \displaystyle 4\), то есть \( \displaystyle <

_<4>>\left( x \right)\)).

Чаще всего используется замена квадратного трехчлена: \( \displaystyle t=a<^<2>>+bx+c\) или \( \displaystyle t=\sqrt^<2>>+bx+c>\).

Подведем итоги

Метод замены переменной имеет \( \displaystyle 3\) основных типа замен переменных в уравнениях и неравенствах:

Степенная замена, когда за \( \displaystyle t\) мы принимаем какое-то неизвестное, возведенное в степень.

Замена многочлена, когда за \( \displaystyle t\) мы принимаем целое выражение, содержащее неизвестное.

Дробно-рациональная замена, когда за \( \displaystyle t\) мы принимаем какое-либо отношение, содержащее неизвестную переменную.

Важные советы при введении новой переменной

  • Замену переменных нужно делать сразу и при первой же возможности.
  • Уравнение (неравенство) относительно новой переменной необходимо решать до конца, и лишь затем возвращаться к старому неизвестному.
  • При возврате к изначальному неизвестному (да и вообще на протяжении всего решения), не забывай проверять корни на ОДЗ.
  • Новая переменная вводится аналогичным образом, как в уравнениях, так и в неравенствах.

Разбор 3 примеров на замену переменных

Пример 7. \( \displaystyle \left( <<>^<2>>-4+7 \right)\left( <<>^<2>>-4+6 \right)=12\)

Решение примера №6

Пусть \( \displaystyle \text=<<>^<3>>\), тогда выражение приобретает вид \( \displaystyle <^<2>>+7\text-8=0\).

Так как \( \displaystyle \text=<<>^<3>>\), то может быть как положительным, так и отрицательным.

Ответ: \( \displaystyle -2;\text< >1\)

Решение примера №7

Пусть \( \displaystyle \text=<<>^<2>>-4+7\), тогда выражение приобретает вид \( \displaystyle \text\cdot \left( \text-1 \right)=12\).

\( \displaystyle <<\text>_<2>>=-3\Rightarrow \) решения нет, так как \( \displaystyle D

Решение:

Это дробно-рациональное уравнение (повтори «Рациональные уравнения»), но решать его обычным методом (приведение к общему знаменателю) неудобно, так как мы получим уравнение \( \displaystyle 6\) степени, поэтому применяется замена переменных.

Все станет намного проще после замены: \( \displaystyle t=<^<3>>\). Тогда \( \displaystyle <^<6>>=<^<2>>\):

Теперь делаем обратную замену:

Ответ: \( \displaystyle \sqrt[3]<3>\); \( \displaystyle \sqrt[3]<4>\).

Решение примера 10 (замена многочлена)

Решите уравнение \( \displaystyle \left( <^<2>>+5x+9 \right)\left( <^<2>>+5x+10 \right)=12\).

Решение:

И опять используется замена переменных \( \displaystyle t=<^<2>>+5x+9\). Тогда уравнение примет вид:

\( \displaystyle t\cdot \left( t+1 \right)=12\text< >\Rightarrow \text< ><^<2>>+t-12=0\).

Корни этого квадратного уравнения: \( \displaystyle t=-4\) и \( \displaystyle t=3\). Имеем два случая. Сделаем обратную замену для каждого из них:

\( \displaystyle t=-4\text< >\Rightarrow \text< ><^<2>>+5x+9=-4\text< >\Rightarrow \text< ><^<2>>+5x+13=0\);

\( \displaystyle D=<<5>^<2>>-4\cdot 13=-17

\( \displaystyle x\in \left[ -\frac<7><2>;-\frac<1> <2>\right]\cup \left( 0;+\infty \right)\)

\( \displaystyle y 0\) при всех \( \displaystyle x\), так как \( \displaystyle D=64-4\cdot 4\cdot 7=-48 0\) при всех \( \displaystyle x\), так как \( \displaystyle D=81-4\cdot 4\cdot 7=-31 0\)

Источник

Читайте также:  Способы уплаты ндфл индивидуальными предпринимателями
Оцените статью
Разные способы