- Объяснение №19,20,21 КЕГЭ по информатике. Решение в Excel
- Задания 19 21 информатика изи способ
- Рубрика «ЕГЭ Задание 19-21»
- Е19-21.30 когда количество камней в куче становится не менее 29
- Е19-21.29 когда суммарное количество камней в кучах становится не менее 44
- Е19-21.28 Игра завершается в тот момент, когда количество камней в куче становится не менее 84.
- Е19-21.27 добавить в кучу один камень, два камня, увеличить количество камней
- Е19-21.26 добавить в кучу один камень, два камня, три камня; увеличить количество камней
- Е19-21.25 добавить в кучу два камня, добавить в кучу три камня или увеличить
- Е19-21.24 добавить в кучу три камня или увеличить количество камней в куче в два раза
- Е19-21.23 когда количество камней в куче становится не менее 25
- Е19-21.22 В начальный момент в первой куче было 8 камней, во второй куче
- Е19-21.21 добавить столько камней, сколько их в данный момент в другой куче
- ЕГЭ по информатике 2021 — Задание 21 (Игроки в игре!)
- Проверяем значение S0 = 7
- Проверяем значение S0 = 12
- Проверяем значение S0 = 17
- Проверяем значение S0 = 30
Объяснение №19,20,21 КЕГЭ по информатике. Решение в Excel
На уроке рассмотрен разбор 19, 20, 21 задания ЕГЭ по информатике: дается подробное объяснение и решение задания.
Объяснение заданий 19, 20 и 21 ЕГЭ по информатике
19-е задание: «Анализ алгоритма логической игры»
Уровень сложности — повышенный,
Требуется использование специализированного программного обеспечения — нет,
Максимальный балл — 1,
Примерное время выполнения — 6 минут.
Проверяемые элементы содержания: Умение анализировать алгоритм логической игры
20-е задание: «Поиск выигрышной стратегии»
Уровень сложности — повышенный,
Требуется использование специализированного программного обеспечения — нет,
Максимальный балл — 1,
Примерное время выполнения — 6 минут.
Проверяемые элементы содержания: Умение найти выигрышную стратегию игры
21-е задание: «Дерево игры для выигрышной стратегии»
Уровень сложности — повышенный,
Требуется использование специализированного программного обеспечения — нет,
Максимальный балл — 1,
Примерное время выполнения — 10 минут.
Проверяемые элементы содержания: Умение построить дерево игры по заданному алгоритму и найти выигрышную стратегию
Источник
Задания 19 21 информатика изи способ
На числовой прямой даны два отрезка: P = [2, 10] и Q = [6, 14]. Какова наибольшая возможная длина интервала A, что формула
( (x ∈ А) → (x ∈ P) ) ∨ (x ∈ Q)
тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
Применив преобразование импликации, получаем:
Логическое ИЛИ истинно, если истинно хотя бы одно утверждение. Выражение P ∨ Q истинно на отрезке [2; 14]. Поскольку все выражение должно быть истинно для любого x, выражение ¬A должно быть истинно на множестве (−∞; 2) ∪ (14; ∞). Таким образом, выражение A должно быть истинно только внутри отрезка [2;14]. Значит, наибольшая длина отрезка равна 14 − 2 = 12.
О длине отрезка написано в примечании к задаче 11119.
На числовой прямой даны три отрезка: P = [10, 40], Q = [5, 15] и R = [35, 50]. Какова наименьшая возможная длина промежутка A, что формула
тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
Логическое ИЛИ истинно, если истинно хотя бы одно утверждение. Введем обозначения:
Применив преобразование импликации, получаем:
(A ∨ P) ∨ (Q → R) = A ∨ P ∨ ¬Q ∨ R.
Логическое ИЛИ истинно, если истинно хотя бы одно утверждение. Условию P ∨ R = 1 удовлетворяет отрезок [10; 50], условие P ∨ ¬Q ∨ R = 1 истинно на множестве (−∞; 5) ∪ [10; ∞). Поскольку выражение A ∨ P ∨ ¬Q ∨ R должно быть тождественно истинным, выражение A должно быть истинно на полуинтервале [5; 10). Значит, наименьшая возможная длина интервала A равна 10 − 5 = 5.
О длине отрезка написано в примечании к задаче 11119.
Источник
Рубрика «ЕГЭ Задание 19-21»
ЕГЭ информатика 19-21 задание разбор, теория, как решать.
Теория игр, выигрышная стратегия, 19.(Б) — 1 балл, 20.(П) — 1 балл, 21.(В) — 1 балл
Е19-21.30 когда количество камней в куче становится не менее 29
Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. …
Е19-21.29 когда суммарное количество камней в кучах становится не менее 44
когда суммарное количество камней в кучах становится не менее 44 Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) два камня или увеличить количество камней в куче в …
Е19-21.28 Игра завершается в тот момент, когда количество камней в куче становится не менее 84.
Игра завершается в тот момент, когда количество камней в куче становится не менее 84. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в …
Е19-21.27 добавить в кучу один камень, два камня, увеличить количество камней
добавить в кучу один камень, два камня, увеличить количество камней. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может а) добавить в кучу один камень; б) добавить в кучу два камня; г) увеличить количество камней в куче …
Е19-21.26 добавить в кучу один камень, два камня, три камня; увеличить количество камней
добавить в кучу один камень, два камня, три камня; увеличить количество камней в куче в два раза. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может а) добавить в кучу один камень; б) добавить в кучу два …
Е19-21.25 добавить в кучу два камня, добавить в кучу три камня или увеличить
добавить в кучу два камня, добавить в кучу три камня или увеличить. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу два камня, добавить в кучу три камня или увеличить количество камней в куче …
Е19-21.24 добавить в кучу три камня или увеличить количество камней в куче в два раза
добавить в кучу три камня или увеличить количество камней в куче в два раза. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу три камня или увеличить количество камней в куче в два раза. …
Е19-21.23 когда количество камней в куче становится не менее 25
Игра завершается в тот момент, когда количество камней в куче становится не менее 25. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу два камня или увеличить количество камней в куче в два раза. …
Е19-21.22 В начальный момент в первой куче было 8 камней, во второй куче
В начальный момент в первой куче было 8 камней, во второй куче – S камней, 1 ≤ S ≤ 68. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень …
Е19-21.21 добавить столько камней, сколько их в данный момент в другой куче
добавить столько камней, сколько их в данный момент в другой куче. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч один камень или добавить столько камней, сколько их в данный момент …
Источник
ЕГЭ по информатике 2021 — Задание 21 (Игроки в игре!)
Сегодня завершаем трилогию по теории игр из первой части ЕГЭ по информатике 2021.
Разберём 21 задание из ЕГЭ по информатике 2021.
Перейдём к примерным задачам из ЕГЭ по информатике 2021.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 18 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 33. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 33 или больше камней. В начальный момент в куче было S камней, 1 ≤ S ≤ 32.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.
Найдите минимальное значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
S0 — первоначальное количество камней в куче.
Петя не должен выиграть на своём первом ходе. Найдём при каких значениях S0 это возможно.
Петя может сделать всего 3 действия. Распишем количество камней в куче для 3-х случаев. Это количество должно быть меньше 33.
+1 | +3 | *2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
S0 + 1 S0=16. Но если и в двух оставшихся ветках это значение пройдёт на первом ходу Вани, то мы не сможем засчитать этот ответ. Может ли Петя выиграть вторым своим ходом ? а) S0+1+1 = S0+2 — Ваня оставил после первого своего хода.
Видим, что Ваня не может выиграть на своём втором ходе в пункте a). Значения не проходят ограничение S0 a+1+ b | a + b+1 | 4*a + b | a + 4*b | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
S0 + 6 S0 a+1+ b | a + b+1 | 4*a + b | a + 4*b | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
S0 + 7 ≥ 61 S0 ≥ 54 | S0 + 7 ≥ 61 S0 ≥ 54 | S0 + 21 ≥ 61 S0 ≥ 40 | 4*S0 + 9 ≥ 61 4*S0 ≥ 52 S0 ≥ 13 |
Получили значение S0 = 13, при котором Ваня может выиграть на своём втором ходе в пункте 1). Это первый кандидат для ответа.
Если мы в пунктах 2), 3), 4) получим меньшие значения, то у Пети есть всегда возможность свернуть в пункт 1), и там уже значения меньше, чем 13, подходить не будут. Теоретически Петя в пунктах 2), 3), 4) может создать ситуацию, когда Ваня не сможет выиграть на своём втором ходе («Заблокировать» ветку б). Но мы, перед тем, как записать ответ, сделаем проверку и найдём такую возможность, если она есть.
в) a=16, b=S0 — Ваня оставил после первого своего хода.
Источник