Задачи с алгебраическим способом решения для начальной школы

Содержание
  1. КАК ПОЗНАКОМИТЬ МЛАДШИХ ШКОЛЬНИКОВ С АЛГЕБРАИЧЕСКИМИ СПОСОБАМИ РЕШЕНИЯ ЗАДАЧ
  2. Подготовка детей к решению задач алгебраическим способом. Примеры.
  3. Решение задач алгебраическим и арифметическим способом
  4. Описание презентации по отдельным слайдам:
  5. Охрана труда
  6. Библиотечно-библиографические и информационные знания в педагогическом процессе
  7. Охрана труда
  8. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  9. Общая информация
  10. Похожие материалы
  11. Палитра
  12. Знакомство. Введение знака «Поднятая рука»
  13. Слова с сочетаниями ЖИ-ШИ
  14. Картины Ивана Ивановича Шишкина 1832-1898
  15. Речевые таблицы
  16. Спорт
  17. Немного об этикете
  18. Решение уравнений
  19. Вам будут интересны эти курсы:
  20. Оставьте свой комментарий
  21. Безлимитный доступ к занятиям с онлайн-репетиторами
  22. Подарочные сертификаты
  23. Решение текстовых задач по математике
  24. Просмотр содержимого документа «решение текстовых задач по математике»

КАК ПОЗНАКОМИТЬ МЛАДШИХ ШКОЛЬНИКОВ С АЛГЕБРАИЧЕСКИМИ СПОСОБАМИ РЕШЕНИЯ ЗАДАЧ

КАК ПОЗНАКОМИТЬ МЛАДШИХ ШКОЛЬНИКОВ С АЛГЕБРАИЧЕСКИМИ СПОСОБАМИ РЕШЕНИЯ ЗАДАЧ

Каких бы образовательных концепций учитель начальной школы не придерживался, по каким бы программам и учебникам не работал, он не может не ставить перед собой цель: научить детей решать задачи.

Учитывая, что понятие «задача» может трактоваться широко, далее речь пойдет о решении математических методах решения задачалгебраическими способами. В курсе математики начальной школы предусмотрено специальное обучение учащихся этому умению.

Анализ литературы (М.А. Бантова, М.И. Моро, С.Е. Царева, Л.М.Фридман и др.) показывает, что работа над задачей состоит из нескольких этапов. Каждый этап требует своего методического решения. Многие авторы (С.Е. Царева, Л.М.Фридман, П.Б.Эрдниев, М.А. Бантова) обращают особое внимание на последний этап — работе с задачей после её решения. Часто предлагается использовать такой приём работы, как составление и преобразование задачи. Многие авторы (Н.Б.Истомина, М.И. Моро, С.Е.Царева) считают, что в процессе составления задач ученики начинают осознавать не только задачную ситуацию, не только связи между величинами, но и сам процесс решения задачи.

Автор учебников математики для начальной школы Н.Б.Истомина выделяет 4 основных способа решения текстовых задач:

Практический, арифметический, алгебраический, графический.

Сущность алгебраического способа покажем на решении следующей задачи: «В гараже стояло 10 машин. После того, как несколько машин уехало, осталось 6. Сколько машин уехало из гаража?» Пусть х – уехавшие машины. Тогда количество всех машин можно записать выражением:

6+х–все машины. По условию задачи известно, что всего в гараже стояло 10 машин. Значит: 6 + х = 10, х =4

При алгебраическом способе ответ на вопрос задачи находится в результате составления и решения уравнения.

Первый русский учебник по математике для младших школьников Л.Ф.Магницкого «Арифметика» 1703 года содержал почти все задачи, которые на сегодняшний день имеются в учебниках математики 1-4 классы. Однако для большинства школьников решение задач является весьма проблемной частью математики.

По книге «Математика для младших школьников» Н.Б. Истоминой возможно рассмотрение только двух аспекта термина «решение задачи»:

• решение как результат (число, ответ);

• решение как процесс нахождения ответа.

Учитель зачастую подменяет работу по поиску разных способов решения одной задачи решением нескольких задач. Однако такое умение указывает на достаточно высокое умственное и математическое развитиеребенка. С.Е. Царева отмечает, что использование метода поиска нового способа решения является основным средством развития познавательного интереса младших школьников.

В зависимости от выбора неизвестного для обозначения буквой, от хода рассуждений можно составить различные уравнения по одной и той же задаче. В этом случае можно говорить о различных алгебраических решениях этой задачи

Источник

Подготовка детей к решению задач алгебраическим способом. Примеры.

Подготовка учеников к составлению уравнений не должна ограничиваться только решением простых задач. Изменения должны коснуться и методики решения составных задач.

Покажем это на примерах. Пусть решается задача: В вазочке было 8 конфет; 4 конфеты съели. Мама положила в вазочку еще 5 конфет. Сколько конфет стало в вазочке? Рассуждения и запись решения такой задачи могут быть проведены следующий образом: «Нужно узнать, сколько конфет стало в вазочке. Обозначим это X. Мы знаем, что в вазочке было 8 конфет, но 4 конфеты съели — стало меньше, надо отнять 4. Мама положила еще 5 конфет — надо прибавить 5. Значит, X = 8 — 4 + 5. Подсчитаем, чему равен X: X = 9, В вазочке стало 9 конфет».

При таком разборе ученик мысленно охватывает все решение задачи в целом, прежде чем приступить к вычислению.

Такой же подход может быть использован и при рассмотрении составных задач других видов даже в тех случаях, когда запись требует использования скобок. Например, дается задача: В одной корзине 6 кг яблок, а в другой — на 2 кг меньше. Сколько яблок в этих корзинах? Решение ее записывается так: X = 6 + (6 — 2); X = 10.

При обучении решению задач большая работа должна проводиться также по формированию у детей способности к анализу и синтезу, обобщению, абстрагированию и конкретизации.

С этой целью могут быть широко использованы такие приемы, помогающие анализу условий задач, как предметная и схематическая иллюстрация условий, построение схем, отражающих связь между данными и искомым, и др. Все эти приемы используются не только учителем, но и самими детьми. ‘ .

С целью подготовки детей к обобщениям, после решения большого числа задач с определенными числовыми данными им могут предлагаться аналогичные задачи-вопросы без чисел, и дети должны только указать, какое арифметическое действие должно быть применено для ответа на поставленный вопрос, после того как станут известны числа. Например, учитель говорит: «Если ты знаешь, сколько книг на одной полке и сколько на другой, то каким действием ты будешь узнавать, сколько всего книг на этих полках?»

В следующих классах эта работа получила дальнейшее развитие. Так, во II классе, обобщая тот большой фактический материал, который накоплен в течение первого года обучения, дети усвоили в общем виде зависимость между компонентами арифметических действий. На этой основе они решали алгебраическим способом задачи, приводящие к простейшим уравнениям первой степени с одним неизвестным.

Читайте также:  Эффективные простые привороты способы

В III классе ученики знакомятся с алгебраическим решением составных задач, например, такого вида: Хозяйка купила 3 кг картофеля по 10 руб. за килограмм и 2 кг капусты. За всю покупку она уплатила 62 руб. Сколько стоит 1 кг капусты? Составленное по условиям задачи уравнение решается на основе знаний зависимости между компонентами арифметических действий. Ученики рассуждают так: «За 3 кг картофеля хозяйка уплатила 3 раза по 10 руб., за 2 кг капусты — 2 раза по Х руб., а вся капуста стоила 62 руб. Значит, 10 х 3 + Х х 2 = 62. Чтобы найти неизвестное слагаемое, нужно от суммы отнять известное слагаемое: Х х 2 = 62 — 30; Х х 2 = 32. Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель: Х = 32 : 2; Х = 16; 1 кг капусты стоит 16 руб.

Так же решаются и другие задачи, сводящиеся к составлению и решению уравнений первой степени с одним неизвестным.

Использование в ряде школ намеченной системы постепенной подготовки детей к решению задач способом составления уравнений показало, что знакомство детей с алгебраическим способом решения задач в начальных классах вполне реально и в перспективе может стать необходимым элементом программы.

Источник

Решение задач алгебраическим и арифметическим способом

Описание презентации по отдельным слайдам:

Описание слайда:

Урок математики в 4 классе
«Решение задач алгебраическим и арифметическим способом»
Учитель начальных классов МОУ СОШ №5 г.о. Кохма Ивановской обл.
Щапова Наталия Станиславовна

Описание слайда:

«Всякая хорошо решённая задача доставляет умственное наслаждение».
Г.Гессе

Описание слайда:

Вперёд! В «Мир математических задач».

Описание слайда:
Описание слайда:

На палубе сидят Иванов, Петров, Марков и Карпов. Их имена: Андрей, Сергей, Тимофей и Алексей. Известно:
а) что Иванов не Алексей и не Андрей;
б) Сергей сидит между Марковым и Тимофеем;
в) Карпов не Сергей и не Алексей;
г) Петров сидит между Карповым и Андреем.
Как зовут Иванова, Петрова, Маркова и Карпова?

Описание слайда:

Иванов Сергей
Петров Алексей
Марков Андрей
Карпов Тимофей

Описание слайда:

Корабельный кок принял на борт 7 больших коробок, каждая массой 9 кг, и 5 маленьких. Какова масса маленькой коробки, если масса всех коробок составила 78 кг?
(х × 5) (кг)
(9 × 7) (кг)
(х × 5 + 9 × 7) (кг)

Описание слайда:

На путешествие в шторм уходит времени в 3 раза больше, чем в хорошую погоду. Сколько времени займет наше путешествие в хорошую и штормовую погоду, если разница во времени составляет 12 часов?
12 ч.

Описание слайда:
Описание слайда:

Масса двух рыб составляла 11 кг. Найдите массу каждой рыбы, если одна из них легче другой на 3 кг.

Описание слайда:

На борт корабля было поднято две бочки с пресной водой одинаковой емкости. Когда из первой было израсходовано 28 л, а из второй – 45 л, то в ней осталось вдвое меньше воды, чем в первой. Сколько было взято воды на борт корабля?

Описание слайда:

Какие способы решения задач мы повторили?
Арифметический и алгебраический способы решения задач.
Объясните, в чем отличие арифметического способа решения задач от алгебраического?
Решая задачу алгебраическим способом, обозначают неизвестную величину буквой, составляют уравнение по условию задачи и решают его. Когда задача решается арифметическим способом, уравнение не составляют.
Арифметический способ мы фактически применяли один – способ уравнивания. Подумайте, почему он получил такое название?
Способ уравнивания заключается в том, что первым шагом во всех случаях было уравнивание двух величин. Это хорошо видно, если представить условие задачи в виде схемы.

Описание слайда:

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Курс повышения квалификации

Охрана труда

  • Сейчас обучается 95 человек из 44 регионов

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

  • Сейчас обучается 335 человек из 66 регионов

Курс профессиональной переподготовки

Охрана труда

  • Сейчас обучается 171 человек из 47 регионов

Ищем педагогов в команду «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

также Вы можете выбрать тип материала:

Общая информация

Международная дистанционная олимпиада Осень 2021

Похожие материалы

Палитра

Знакомство. Введение знака «Поднятая рука»

Слова с сочетаниями ЖИ-ШИ

Картины Ивана Ивановича Шишкина 1832-1898

Речевые таблицы

Спорт

Немного об этикете

Решение уравнений

Не нашли то что искали?

Воспользуйтесь поиском по нашей базе из
5310667 материалов.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

В Минпросвещения предложили организовать телемосты для школьников России и Узбекистана

Время чтения: 1 минута

Спортивные и творческие кружки должны появиться в каждой школе до 2024 года

Время чтения: 1 минута

Российские школьники завоевали пять медалей на олимпиаде по физике

Время чтения: 1 минута

Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года

Время чтения: 1 минута

Минпросвещения разрабатывает образовательный минимум для подготовки педагогов

Время чтения: 2 минуты

Минпросвещения будет стремиться к унификации школьных учебников в России

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Читайте также:  Как классифицируется сиз по способу изготовления

Источник

Решение текстовых задач по математике

в данной материале рассмотрены различные способы решения текстовых задач по математике

Просмотр содержимого документа
«решение текстовых задач по математике»

Оржевский филиал МБОУ Уметской СОШ

Тема: «Решение текстовых задач различными способами»

В начальных классах учащимся знаком только один способ решения текстовых задач – арифметический и немного учебного времени отводится для решения задач с помощью уравнений. Задачи сопровождают человека на протяжении всей его жизни. Уже в 5-6 классах мы решаем большинство текстовых задач с помощью уравнений. Этот способ так и называем «с помощью уравнений».

Текстовые задачи, на мой взгляд, трудный материал. Однако в школьном курсе математики ему придается большое значение, так как такие задачи способствуют развитию логического мышления, речи. Данная тема интересна, потому что она позволяет находить новые неординарные подходы к решению задач, ведь многие текстовые задачи очень трудно решить аналитическим путем. Научившись решать задачи различными способами, я смогу применять их не только на уроках, но и олимпиадах.

На мой вопрос к учащимся 5-9 классов: «Какие способы решения текстовых задач вы знаете?» я получила следующие ответы:

-22% учеников ответили на мой вопрос: «….по действиям»,

-78% ответили: «…с помощью уравнения». Единицы учеников назвали эти способы, как арифметический и алгебраический. Других способов решения текстовых задач опрошенные учащиеся не назвали.

Существуют различные подходы к определению самой задачи. Остановимся на точке зрения Л.М. Фридмана: «Задача представляет собой требование или вопрос, на который надо найти ответ, опираясь и учитывая те условия, которые указаны в задаче».

Математическая задача – это связанный лаконический рассказ , в котором введены значения некоторых величин и предлагается отыскать другие неизвестные значения величин, зависимые от данных и связанные с ними определенными соотношениями, указанными в условии. Любая текстовая задача состоит из двух частей: условия и требования (вопроса). В условии соблюдаются сведения об объектах и некоторых величинах, характеризующих данные объекта, об известных и неизвестных значениях этих величин, об отношениях между ними. Требования задачи – это указание того, что нужно найти .

В современной математике существуют различные способы решения текстовых задач:

Арифметический метод. Решить задачу арифметическим способом значит найти ответ, на требование задачи, выполняя арифметические действия над числами.

Алгебраический метод. Решить задачу алгебраическим способом — это значит найти ответ на требование задачи, составив и решив уравнение или системы уравнений (или неравенств).

Геометрический метод. Решить задачу геометрическим методом — значит найти ответ на требование задачи, используя геометрические построения или свойства геометрических фигур.

Схематический. Решить задачу схематическимспособом — это значит найти ответ на требование задачи, как правило, с помощью схем.

Графический. Решить задачу графическим способом — значит решить задачу с помощью графиков в прямоугольной системе координат.

Традиционными способами решения задач являются арифметический и алгебраический, остальные менее известны, поэтому отнесём их к нетрадиционным.

Решение текстовых задач арифметическим способом

В арифметическом способе решить задачу- это значит выполнитьарифметические действия над числовыми данными из условия задачи, составив числовое выражение, а конечный результат вычислений – ответ на вопрос задачи.

Задача 1. Три друга Саша, Коля и Витя собирали в лесу грибы. Коля собрал грибов в 2 раза меньше, чем Саша, а Витя на 6 грибов больше, чем Коля. Сколько грибов собрали три друга вместе, если Саша собрал 22 гриба?

Решение данной задачи не вызывает трудность, если грамотно составить краткую запись:

Коля -?грибов, в 2 раза меньше, чем Саша;

Витя-?грибов, на 6 грибов больше, чем Коля;

Всего: Саша+ Коля+ Витя-? грибов.

В начальной школе нас учили решать эту задачу по действиям, отвечая последовательно на каждый вопрос задачи, а затем на главный вопрос.

22+11+17=50 (гр.) вместе.

Эту же задачу можно решить, записав числовое выражение:

Задача 2. Поют в хоре и занимаются танцами 82 ученика, занимаются танцами и художественной гимнастикой 32 ученика, а поют в хоре и занимаются художественной гимнастикой 78 учеников. Сколько учеников поют в хоре, занимаются танцами и художественной гимнастикой отдельно, если известно, что каждый ученик занимается только чем-то одним?

1) 82 32 + 78 = 192 (чел.) — удвоенное число учеников, поющих в хоре, занимающихся танцами и художественной гимнастикой;

2) 192:2 = 96 (чел.) — поют в хоре, занимаются танцами и художественной гимнастикой;

3) 96 – 32 = 64 (чел.) — поют в хоре;

4) 96 – 78 = 18 (чел.) — занимаются танцами;

5) 96 – 82 = 14 (чел.) — занимаются художественной гимнастикой.

1) 82 – 32 = 50 (чел.) — настолько больше учеников поют в хоре, чем

занимаются художественной гимнастикой;

2) 50 + 78 = 128 (чел.) — удвоенное число учеников, поющих в хоре;

3) 128 : 2 = 64 (чел.) — поют в хоре;

4) 78 – 64 = 14 (чел.) — занимаются художественной гимнастикой;

5) 82 – 64 = 18 (чел.) — занимаются танцами.

Ответ: 64 ученика поют в хоре, 14 учеников занимаются художественной гимнастикой, 18 учеников занимаются танцами.

Решение текстовых задач алгебраическим способом

Известный американский педагог и математик Д.Пойа пишет, что «составить уравнение – значит выразить символами условие, сформулированное словами. Это перевод с обычного языка на язык математических формул. Трудности, которые могут встретиться при составлении уравнений, являются трудностями перевода» .

При решении задачи алгебраическим способом необходимо выполнить несколько этапов:

1) Арифметическую краткую запись условия задачи (цель этого этапа-осмысление задачи и выяснение связей между величинами). Форма записи может быть различной – схематический чертёж или таблица всех известных и неизвестных данных задачи. Важно помнить, что этот этап может отсутствовать, если решение задачи элементарно или она не особо усложнена условиями. Неизвестные величины на чертеже или в таблице удобно обозначать знаком «?», а главный вопрос задачи, например, выделить в «кружок». Нужно помнить, что единицы измерения всех величин должны быть единые. Намного облегчает решение задачи общепринятые обозначения в математике, физике и т.д.

Читайте также:  Cosmetic center srl lozione per capelli hair lotion способ применения

2) Алгебраическая краткая запись условий задачи (цель этапа – удачно выбрать переменную и выразить все неизвестные величины задачи через неё. Форма записи такая, как и на 1 этапе, но только вместо знаков «?» везде надо записать выражения с переменной. Важно помнить, обычно этот этап начинается с фразы: «Пусть x единиц -…, тогда…». Чаще всего за неизвестное принимают главный вопрос задачи, хотя бывает это и неудобно, тогда за неизвестное принимают другую величину. При введении переменной необходимо учесть наибольшее удобство математической записи условия задачи.

3) Составление и решение уравнения или системы уравнений или неравенств (цель этапа – составить уравнение или неравенство, опираясь на условие задачи, и найти его решение). Необходимо учитывать область допустимых значений переменных (ОДЗ), чтобы составить уравнение нужно увязать известные и неизвестные данные задачи в формулы. Например, s=vt.

4) Анализ решения уравнения или неравенства. Цель этапа – из всех найденных решений уравнения выбрать те, которые подходят по смыслу задачи. Обычно этот этап начинается фразой: «По смыслу задачи x должна быть величиной…» (положительной, натуральной, целой, принадлежащей промежутку и т.д.) Если смысловое значение не выполнено, то найденную величину называют посторонним решением. Полезно провести проверку.

5) Запись ответа в соответствии с вопросом задачи.

Решим алгебраическим способом задачу 2, которую решали выше арифметическим способом.

Задача 2. Поют в хоре и занимаются танцами 82 ученика, занимаются танцами и художественной гимнастикой 32 ученика, а поют в хоре и занимаются художественной гимнастикой 78 учеников. Сколько учеников поют в хоре, занимаются танцами и художественной гимнастикой отдельно, если известно, что каждый ученик занимается только чем-то одним?

Пусть х учеников занимались танцами, тогда 82-х учеников пели в хоре и 32-х учеников занимались художественной гимнастикой. Составим уравнение по последнему предложение нашей задачи -поют в хоре и занимаются художественной гимнастикой 78 учеников,значит

(82-х)+(32-х)=78, 2х=36, х=18 учеников занимались танцами, 82-18=64 ученика пели в хоре, 32-18=14 учеников занимались художественной гимнастикой.

Задача 3. Рабочий может сделать определенное число деталей за три дня. Если он в день будет делать на 10 деталей больше, то справится с заданием за два дня. Какова первоначальная производительность рабочего и сколько деталей он должен сделать?

Пусть х деталей в день — первоначальная производительность рабочего. Тогда (х + 10)деталей в день — новая производительность, Зх деталей – число деталей, которое он должен сделать. По условию получаем уравнение Зх = 2(х + 10), решив которое найдем х = 20. Первоначальная производительность рабочего 20 деталей в день, он должен сделать 60 деталей.

Ответ: 20 деталей в день; 60 деталей.

Алгебраический способ решения задач является самым распространенными наиболее общим в школьном курсе изучения математики.

Решение текстовых задач геометрическим способом

Геометрический способ заключается в применении свойств геометрических фигур и взаимосвязи их элементов в процессе решения задачи. Данный метод делает решение текстовой задачи более наглядным и позволяет избежать громоздких вычислений. Для составления математической модели текстовой задачи чаще всего применяются отрезки и их длины, а также прямоугольники и их площади. Геометрия придает алгебре необыкновенную красоту и изящность. А вместе алгебра и геометрия представляют собой единое целое. Французский математик София Жермен писала: «Алгебра – не что иное, как записанная в символах геометрия, а геометрия – это просто алгебра, воплощенная в фигурах»

Задача 4. Предприятие уменьшило выпуск продукции на 20% . На сколько процентов необходимо теперь увеличить выпуск продукции, чтобы достигнуть его первоначального уровня.

Данную задачу можно решить алгебраическим способом, например, применив дважды, основное свойство пропорции, а можно, применив формулу изменения величины в процентах. Тогда если а – первоначальное количество продукции, а х — % увеличения, то а•(1-0,20)•(1+0,01х)=а. Решив уравнение, найдём х=25%.

Но геометрический способ, на мой взгляд, наиболее наглядно позволяет увидеть решение.

Решение: Представим первоначальный выпуск продукции в виде отрезка АВ Разделим его на 5 равных частей и отметим точку С на расстоянии 1/5 от В. Мы получим отрезок АС, равный 4/5 АВ. Из чертежа видно, что требуется найти какую часть составляет ВС от АС. Решение очевидно. Так как ¼ АС=ВС, тогда требуется увеличить выпуск продукции на ¼ АС, т. е. на 25%.

Задача 7. Моторная лодка, скорость которой в стоячей воде 15 км/ч, прошла по течению реки 35 км и против течения 25 км. На путь по течению реки она затратила столько же времени как на путь против течения. Какова скорость течения реки?

Алгебраический метод приводит к уравнению: 35/(15-x)= 25/(15+x),где x – скорость течения реки. Решив уравнение, находим x=2,5км/ч.

Рассмотрим геометрический метод. Прямоугольники изображаем вместе, чтобы они составляли один большой прямоугольник. Высоты составляющих прямоугольников равны, так как лодка двигалась одинаковое время по течению и против течения реки. Пусть сторона АВ прямоугольника ABCD изображает скорость лодки по течению реки, ВЕ– скорость лодки против течения (BE ˂АВ), а отрезок EF изображает время движения лодки против течения реки, AD будет изображать время движения лодки по течению реки. Если обозначить через x скорость течения реки, а через t– время движения лодки по течению реки, то AB=15+х и EF=AD=t.

Источник

Оцените статью
Разные способы