Задачи по математике решаемые несколькими способами

Решение задач разными способами – средство повышения интереса к математике.
методическая разработка по математике (1 класс) по теме

Среди всех мотивов учебной деятельности самым действенным является познавательный интерес, возникающий в процессе обучения. Он не только активизирует умственную деятельность в данный момент, но и направляет ее к последующему решению различных задач.

Устойчивый познавательный интерес формируется разными средствами. Одним из них является решение задач разными способами.

Скачать:

Вложение Размер
Решение задач разными способами 28.24 КБ

Предварительный просмотр:

Войнова Светлана Юрьевна, учитель начальных классов,

МОУ «СОШ №56 с углубленным изучением отдельных предметов»

Решение задач разными способами – средство повышения интереса к математике.

Люди научились считать 25-30 тысяч лет тому назад. О значении математики как предмета школьного преподавания М.В.Ломоносов в записке о преподавании физики, химии и математики пишет так:

«А математику уже затем учить следует, что она ум в порядок приводит».

Среди всех мотивов учебной деятельности самым действенным является познавательный интерес, возникающий в процессе обучения. Он не только активизирует умственную деятельность в данный момент, но и направляет ее к последующему решению различных задач.

Устойчивый познавательный интерес формируется разными средствами. Одним из них является решение задач разными способами.

Большие возможности для развития интереса учащихся к математике имеют задачи и их решения разными способами. Для кого из ребят интересна математика? Да математику любят в основном те ученики, которые умеют решать задачи, научив их решать задачи разными способами, мы окажем существенное влияние на их интерес к предмету, на развитие мышления и речи.

Однако в практике обучения математике различные способы решения ещё не заняли достойного места. Причин этому много, и в частности, недостаточная ориентация на эту работу в учебниках, методических пособиях для учителей. Учитель поэтому зачастую не владеет теми приёмами, с помощью которых можно отыскать другие способы решения. А без этого невозможно и детей научить находить разные способы решения, трудно использовать эти способы решения для других целей обучения и воспитания.

В начальном курсе математики текстовые задачи могут быть решены различными способами : алгебраическим, практическим, графическим, табличным, схематическим, комбинированным.

Рассмотрим различные способы решения текстовых задач на конкретных примерах.

Начальный курс математики ставит своей основной целью научить младших школьников решать задачи арифметическим способом, который сводится к выбору арифметических действий, моделирующих связи между данными и искомыми величинами. Решение задач оформляется в виде последовательности числовых равенств, к которым даются пояснения, или числовым выражением.

Задача. «Утром ушли в море 20 маленьких и 8 больших рыбачьих лодок, 6 лодок вернулись. Сколько лодок с рыбаками должно вернуться?»

I способ. 1. 20+8=28(л.) ушли в море.

2. 28-6=14(л.) должны вернуться.

II способ. 1. Сколько больших лодок должно вернуться? 20-6=14(л.)

2. Сколько всего лодок должно вернуться? 14+8=22(л.)

III способ. 1. Сколько маленьких лодок должно вернуться? 8-6=2(л.)

2.Сколько всего лодок должно вернуться? 20+2=22(л.)

Ответ: должно ещё вернуться 22 лодки. Задача решена различными арифметическими способами.

Если у учащихся нет навыков решения задач различными арифметическими способами или вызывает затруднение их нахождение, можно предложить следующие методические приёмы:

1. разъяснение плана решения задачи;

2. пояснение готовых способов решения;

3. соотнесение пояснения с решением;

4. продолжение начатых вариантов решения;

5. нахождение «ложного» варианта решения из числа предложенных.

Текстовые задачи решаются либо синтетическим методом (вычисления в прямом порядке, от числовых данных условия к числовым результатам, о которых спрашивается в задаче), либо аналитическим (вычисления в обратном порядке с рассуждениями, идущими от вопроса задачи). Примерами этих последних являются задачи о «задуманном числе», а также задачи на части. Естественным оформлением решения таких задач служит составление уравнения – алгебраический метод. Он состоит из следующих шагов: 1.Введение неизвестного. 2.Выражение через это неизвестное величин, о которых говорится в задаче. 3.Составление уравнения. 4.Решение уравнения. 5.Осмысление результата и формулирование ответа.

Задача: «У Иры втрое больше наклеек, чем у Кати, а у Кати на 20 наклеек меньше, чем у Иры. Сколько наклеек у Кати?».

Вначале составим схему уравнения, содержащую не только математические знаки, но и естественные слова.

( Ирины наклейки) – (Катины наклейки) = 20 наклеек.

Получилась вспомогательная модель задачи – частичный перевод текста на математический язык. Введём неизвестное. Пусть х – число Катиных наклеек. Тогда число наклеек у Иры равно х 3.

Составим уравнение х * 3 – х = 20

Ответ: у Кати 10 наклеек.

При обучении алгебраическому методу решения текстовых задач полезно дополнить схему решения самым первым шагом – составлением схемы уравнения, в которую включаются как математические символы, так и нематематические записи и даже рисунки.

Это способ решения задачи с помощью чертежа.

Задача: «Рыбак поймал 10 рыб. Из них 3 леща, 4 окуня, остальные щуки. Сколько щук поймал рыбак?»

лещи окуни щуки

Этот способ, так же как и практический, позволяет ответить на вопрос задачи, не выполняя арифметических действий.

Построение чертежа помогает найти другой арифметический способ решения задачи.

Задача: «На одной машине увезли 28 мешков зерна, на другой на 6 мешков больше, чем на первой, а на третьей на 4 мешка меньше, чем на второй. Сколько мешков зерна увезли на третьей машине?»

I способ. 1. 28+6=34 (мешка) – увезли на второй машине.

2. 34-4=30 (мешка)- увезли на третьей машине.

Ответ : на третьей машине увезли 30 мешков зерна.

Если же мы построим чертеж к этой задачи, то легко найдем другой арифметический способ решения.

  1. На сколько больше мешков увезли на третьей машине, чем на первой? 6-4=2(мешка)
  2. Сколько мешков увезли на третьей машине? 28+2=30 (мешков)

Ответ: на третьей машине увезли 30 мешков зерна.

Из приведенных примеров следует вывод: графическое оформление задачи может определить ход мыслительного процесса и является средством выявления различных способов решения одних и тех же задач. При этом легче усматриваются разные логические основы, содержащиеся в условии задачи; такие способы определяются анализом наглядного сопровождения задачи, на которые учащиеся направляются постановкой учителем соответствующих заданий.

Задача: «В 6 банок поровну разложили 12 кг варенья. Сколько надо таких же банок, чтобы разложить 24 кг варенья?»

В данном случае логическая основа задачи проявляется на двух уровнях – открытом и скрытом, т. е. здесь две логические основы. В первом случае направление мыслительного процесса определяется вопросами:

  1. Сколько кг варенья помещается в одну банку? 12:6=2(кг)
  2. Сколько банок потребуется для 24 кг варенья? 24:2=12(б.)

Во втором случае ход того же процесса определяется другими вопросами:

1.Во сколько раз больше стало варенья? 24:12=2(раза)

Если варенья стало в два раза больше, значит, и банок потребуется в два раза больше.

2.Сколько потребуется банок? 6 * 2=12(б.)

Ответ: потребуется 12 банок.

При решении некоторых задач хорошим подспорьем является табличная форма.

Задача: «У Саши в коллекции 8 жуков и пауков. У всех насекомых 54 ноги. У одного жука 6 ног, а у одного паука – 8ног. Сколько жуков и сколько пауков у Саши в коллекции?»

Источник

Решение одной задачи несколькими способами

Описание презентации по отдельным слайдам:

Решение одной задачи несколькими способами !

Задание из ЕНТ. На клетчатой бумаге с клетками размером 1 см х 1 см изображен треугольник (см. рисунок). Найдите его площадь в квадратных сантиметрах.

(для перехода — нажать на карандаш ) 1. « Считаем по клеткам». 2. «Формула площади фигуры». 3. «Способ сложения». 4. «Способ вычитания». 5. «Формула Пика». Содержание.

7 3 1 2 4 5 6 8 9 10 1 способ « Считаем по клеткам» 1.Посчитаем количество полных клеток внутри данного треугольника. 10 2.Дополним неполные клетки друг другом до полных клеток. 5 3. Сложим полученные количества полных клеток: 10+5=15 Ответ: 15 1 2 3 4 это ½ клетки это ½ клетки 5 Назад

а h 6 5 «Формула площади фигуры» Площадь искомого треугольника найдем по формуле: Sтр=(а•h)/2, где а – основание треугольника, h – высота, проведенная к этому основанию. а=6, h=5 Получаем Sтр=(6•5)/2=15 Ответ: 15 2 способ Назад

«Сложение площадей частей фигур» 1.Разобьем данный треугольник на два прямоугольных треугольника, для этого проведем высоту. 2.Найдем площадь прямоугольного треугольника S1 : S1 = (5Х5)/2=12,5 3.Найдем площадь прямоугольного треугольника S2: S2 = (5х1)/2=2,5 4.Площадь искомого треугольника найдем по формуле: Sтр=S1+S2 Sтр=12,5+2,5=15 Ответ: 15 5 1 5 3 способ S1 S2 Назад

5 6 5 5 1 S1 S2 «Вычитание площадей фигур» 1.Достроим до прямоугольника со сторонами 5 и 6. 2.Найдем площадь прямоугольника: Sпр=5Х6=30 3.Найдем площадь прямоугольного треугольника S1 : S1 = (5Х5)/2=12,5 4.Найдем площадь прямоугольного треугольника S2: S2 = (5х1)/2=2,5 5.Площадь искомого треугольника найдем по формуле: Sтр=Sпр-(S1+S2) Sтр=30-(12,5+2,5)= 15 Ответ: 15 4 способ Назад

Георг Александр Пик, австрийский математик (10.08.1859 — 13.07.1942) Георг Пик *

«Формула Пика» Площадь искомого треугольника найдем по формуле Пика: S=Г/2+В-1, где Г –количество узлов на границе треугольника(на сторонах и вершинах), В – количество узлов внутри треугольника. Г= Получаем S=12/2+10-1=15 Ответ: 15 В= 12 10

* Найдём площадь треугольника: Задача 1.

Г = 15 (обозначены красным) В = 34 (обозначены синим) Отметим узлы: * 1 клетка = 1 см

Найдём площадь параллелограмма: * Задача 2.

Г = 18 (обозначены красным) В = 20 (обозначены синим) * Отметим узлы:

Найдём площадь трапеции: * Задача 3.

Г = 24 (обозначены красным) В = 25 (обозначены синим) * Отметим узлы:

Найдём площадь многоугольника: * Задача 4.

Г = 14 (обозначены красным) В = 43 (обозначены синим) * Отметим узлы:

* Задача 5. Найдём площадь фигуры:

Г = 11 (обозначены красным) В = 5 (обозначены синим) * Отметим узлы:

Найдём площадь фигуры: *

Опишем около неё прямоугольник: Из площади прямоугольника (в данном случае это квадрат) вычтем площади полученных простых фигур: *

1. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1см х 1 см. Ответ дайте в квадратных сантиметрах. * Решите самостоятельно:

2. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1см х 1 см. Ответ дайте в квадратных сантиметрах. *

3. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1см х 1 см. Ответ дайте в квадратных сантиметрах. *

4. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1см х 1 см. Ответ дайте в квадратных сантиметрах. *

австрийский математик Георг Александр Пик (Georg Alexander Pick) (1859-1943 гг.) Формула Пика была открыта в 1899 г. http://kvant.mirror1.mccme.ru/1977/04/celye_tochki_v_mnogougolnikah.htm — научно-популярный физико-математический журнал «Квант», Кушниренко А. «Целые точки в многоугольниках и многогранниках». http://kvant.mirror1.mccme.ru/1974/12/vokrug_formuly_pika.htm — научно-популярный физико-математический журнал «Квант», Васильев Н. «Вокруг формулы Пика». Назад

В презентации использованы: http://www.mathege.ru:8080/or/ege/ShowProblem.html?probId=5115 – задание № 5115, сайт «Открытый банк заданий по математике», http://www.mathege.ru:8080/or/ege/ShowProblems.html?posMask=32&showProto=true — прототипы задания В3, сайт «ОБЗ по математике», http://www.proshkolu.ru/user/Nadegda797/file/635838/&newcomment=803270#comment803270 – анимационные картинки

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 801 человек из 76 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 283 человека из 69 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 605 человек из 75 регионов

Ищем педагогов в команду «Инфоурок»

Номер материала: ДБ-1315512

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года

Время чтения: 1 минута

Вопрос о QR-кодах для сотрудников школ пока не обсуждается

Время чтения: 2 минуты

Российский совет олимпиад школьников намерен усилить требования к олимпиадам

Время чтения: 2 минуты

Минпросвещения разрабатывает образовательный минимум для подготовки педагогов

Время чтения: 2 минуты

В проекте КоАП отказались от штрафов для школ

Время чтения: 2 минуты

Минпросвещения будет стремиться к унификации школьных учебников в России

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Читайте также:  Каким способом размножаются дельфины
Оцените статью
Разные способы