Задача решаемая пятью способами для 5 класса

Содержание
  1. Урок математики в 5-м классе «Решение текстовых задач различными способами»
  2. Задания по математике 5 класс: для занятий дома
  3. § Как правильно заниматься дома
  4. § Задания для 5 класса на тему «Натуральные числа»
  5. ✍ 3адание 1
  6. ✍ 3адание 2
  7. ✍ 3адание 3
  8. § 3адания на тему «Сравнения натуральных чисел»
  9. ✍ 3адание
  10. § 3адания на тему «Сложение, вычитания натуральных чисел»
  11. ✍ 3адание 1
  12. ✍ 3аданиие 2
  13. § 3адания на тему «Луч, прямая, отрезок»
  14. ✍ 3адание 1
  15. ✍ 3адание 2
  16. § 3адания на тему «Уравнения»
  17. ✍ 3адание 1
  18. ✍ 3адание 2
  19. ✍ 3адание 3
  20. § 3адания на тему «Квадрат и куб числа»
  21. ✍ 3адание 1
  22. ✍ 3адание 2
  23. § 3адания на тему «Обыкновенные дроби»
  24. ✍ 3адание 1
  25. ✍ 3адание 2
  26. ✍ 3адание 3
  27. ✍ 3адание 4
  28. § 3адания на тему «Сложение и вычитание обыкновенных дробей»
  29. ✍ 3адание 1
  30. ✍ 3адание 2
  31. ✍ 3адание 3
  32. § 3адания на тему «Умножение и деление обыкновенных дробей»
  33. ✍ 3адание 1
  34. ✍ 3адание 2
  35. ✍ 3адание 3
  36. § 3адания на тему «Десятичные дроби»
  37. ✍ 3адание 1
  38. ✍ 3адание 2
  39. § 3адания на тему «Сложение и вычитание десятичных дробей»
  40. ✍ 3адание 1
  41. ✍ 3адание 2
  42. § 3адания на тему «Умножение и деление десятичных дробей»
  43. ✍ 3адание 1
  44. ✍ 3адание 2
  45. ✍ 3адание 3

Урок математики в 5-м классе «Решение текстовых задач различными способами»

Разделы: Математика

Комментарий: Урок соответствует программе учебника Виленкина Н.Я. Математика: Учебник для 5 класса общеобразовательных учреждений; проводится при изучении главы п.10 “Уравнение”.

Цели урока:

  • закрепление умений решения задач различными способами (с помощью уравнений и по действиям);
  • знакомство с другими способами решения текстовых задач (подбор, полный перебор, метод предположения);
  • активизация мыслительной деятельности учащихся;
  • развитие навыков самостоятельной работы;
  • формирование умения групповой деятельности;
  • привитие аккуратности, математической грамотности.

Ход урока

I. Организационный момент

1. Сообщение учащимся целей урока.

Комментарий: На доске – высказывание французского математика Жака Адамара

Прежде чем решать задачу – прочитай условие.

2. Проверка домашнего задания.

Было задано решить задачу двумя способами:

На лугу паслось несколько коров. У них ног на 24 больше, чем голов. Сколько коров паслось на лугу?

II. Актуализация полученных знаний

Работа с тетрадью на печатной основе: составление выражений для решения задач (№ 281 (1,3,5))

Комментарий: Так как у каждого ученика есть тетрадь на печатной основе, в которой необходимо заполнить пропущенные места, то данная работа не занимает много времени у пятиклассников, которые пишут медленно. В ходе выполнения данной работы учащиеся закрепляют умение составлять выражения для решения текстовых задач.

А) В одной капле сидит х микробов, а в другой на 17 микробов больше. Сколько микробов засядут в ученом Иннокентии, если он перепутает эти капли с валерьянкой и выпьет их залпом?

Б) В комнате веселилось у мух. К ним на праздник прилетело 12 мух, но отважный кот Васька все же сумел выгнать 7 мух. Сколько мух продолжало веселиться в комнате?

В) В доме прорвало сразу две трубы – холодную и горячую. Из холодной выливается у литров ледяной воды в минуту. Из горячей трубы – в два раза больше кипятка в минуту. Сколько горячей и холодной воды выльется на несчастных жильцов за 1 час?

III. Систематизация знаний учащихся

Решение задачи из тетради на печатной основе (№ 271 (б))

Марина сделала в диктанте несколько ошибок. Гриша у нее все списал, да еще допустил 5 ошибок. Сколько ошибок допустил каждый, если учитель обнаружил в двух диктантах 35 ошибок?

В ходе устной работы учитель выясняет, какими способами ученики могут решить эту задачу (уравнением и по действиям), записывают в тетради тот способ, который вызвал наибольшие затруднения. При записи решения “по действиям” необходимо составлять подробные пояснения к каждому действию. Решение можно оформить следующим образом:

35 – 5 = 30 (ошибок) без учета Гришиных сделали ребята

30 : 2 = 15 (ошибок) сделала Марина

15 + 5 = 20 (ошибок) сделал Гриша

Ответ: Гриша сделал 20 ошибок, Марина 15 ошибок.

Комментарий: в классе, где я работаю в этом году, составление уравнений для решения задач затруднений не вызывало, так как дети делали это еще в начальной школе. Затруднения вызывал способ решения таких задач по действиям, поэтому на протяжении изучения всей темы мы решали задачи двумя способами – с помощью уравнений, как заложено в программе, и по действиям.

IV. Поисковая деятельность учащихся

1.Самостоятельная работа учащихся по решению задачи.

Учащимся предлагается старинная китайская задача.

В клетке находятся фазаны и кролики. Всего 6 голов и 20 ног. Сколько кроликов и сколько фазанов в клетке?

С учащимися разбирается текст задачи, выясняется понимание и правильность постановки цели. Предлагается решить детям задачу несколькими способами, работая в группах.

2. Обсуждение способов решения задачи.

Способ 1. Метод подбора: 2 фазана, 4 кролика.

Проверка: 2 + 4 = 6 (голов); 4 · 4 + 2 · 2 = 20 (ног).

Комментарий: обычно это первое решение, которое предлагают учащиеся. Важно, чтобы они сами сказали, что это метод подбора (от слова “подбирать”). В ходе беседы необходимо выяснить, какие преимущества и недостатки у этого метода решения (трудно подбирать, если числа большие) Таким образом, появляется стимул для поиска более удобных методов решения.

Итоги обсуждения: метод подбора удобен при действиях с маленькими числами, при увеличении величин он становится нерациональным и трудоемким.

Способ 2. Полный перебор вариантов.

Решение лучше всего оформляется в виде таблицы:

Количество Всего
фазанов кроликов голов ног
5 1 6 14
4 2 6 16
3 3 6 18
2 4 6 20
1 5 6 22
Читайте также:  При конъюнктивите способ заражения

Ответ: 4 кролика, 2 фазана.

Комментарий: учащиеся с самого начала дают название этому методу, необходимо лишь подвести их к слову “полный”.

Итоги обсуждения: метод полного перебора удобен, но при больших величинах достаточно трудоемок.

Способ 3. Метод предположения.

Учащиеся могут и не додуматься до этого метода, тогда их надо направить. Это можно сделать в ходе следующей беседы:

Ребята, представим, что сверху на клетку, в которой сидят фазаны и кролики, мы положили морковку. Все кролики встанут на задние лапки, чтобы дотянуться до морковки. Сколько ног в этот момент будет стоять на земле?

Но в условии задачи даны 20 ног, где же остальные?

Остальные не посчитаны – это передние лапы кроликов. Значит, у кроликов 8 передних ног (20 – 12 = 8), а самих кроликов 2 (8 : 2 = 4). Тогда фазанов 4 (6 – 4 = 2).

Учащимся сообщается название этого метода – “метод предположения по недостатку”, пусть они сами попробуют объяснить это название (у сидящих в клетке 2 или 4 ноги, а мы предположили, что у всех наименьшее из этих чисел – 2 ноги).

Затем перед учащимися ставится следующая проблема: решить эту задачу методом предположения по избытку, решение задачи этим методом оформляется в тетрадях:

4 · 6 = 24 (ноги) были бы в клетке, если бы у всех было по 4 ноги

24 –20 = 4 (ноги) лишние, ноги фазанов

4 : 2 = 2 (фазана) в клетке

6 – 2 = 4 (кролика) в клетке

Ответ: 2 фазана, 4 кролика.

Итоги обсуждения: метод предположения имеет два варианта – по недостатку и по избытку, по сравнению с предыдущими методами он удобнее, так как менее трудоемок.

V. Подведение итогов урока

1. С какими методами решения текстовых задач мы сегодня познакомились?

2) полного перебора;

2. Выставление оценок.

3. Задание на дом

1) Решить задачу тремя способами:

Девяти мальчикам и девочкам подарили 60 конфет, причем каждая девочка получила по 7 конфет, а мальчик по 6. Сколько было мальчиков и сколько девочек?

2) Составьте задачу, которую можно решить способом предположения.

Список литературы

1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика: Учебник для 5 класса общеобразовательных учреждений. – М.: Мнемозина, 1999-2004. – 384 с.

2. Гаврилова Т.Д. Занимательная математика. 5 – 11 классы. (Как сделать уроки математики нескучными) – Волгоград: Учитель, 2005. — 96 с.

3. Лебединцева Е.А., Беленкова Е.Ю. Математика 5 класс. Тетрадь 2. Задания для обучения и развития учащихся. – М: Интеллект-Центр, 2005. – 104 с.

4. Никольский С.М., Потапов М.К., Решетников Н.Н., Шевкин А.В. Арифметика: Учебник для 5 класса общеобразовательных учреждений. – М.: Просвещение, 1999-2005. – 255 с.

5. Шевкин А.В. Обучение решению текстовых задач в 5-6 классах.: Книга для учителя. – М.:Галс плюс, 1998. – 168 с.

6. Шевкин А.В. Материалы курса “Текстовые задачи в школьном курсе математики”: Лекции 1 – 4. М.: Педагогический университет “Первое сентября”, 2006. – 88 с.

7. Я иду на урок математики. 5 класс: Книга для учителя. – М.: Первое сентября, 2001. – 352 с.

Источник

Задания по математике 5 класс: для занятий дома

Самостоятельные занятия с ребенком в домашних условиях играют важную роль в процессе обучения. Даже не имея специального образования можно самостоятельно прорешивать с ним примеры и задачи по основным темам, встречающимся в текущем учебном году.

Эти задания вы можете распечатать на принтере.

§ Как правильно заниматься дома

Для того чтобы занятия действительно приносили пользу, необходимо придерживаться определенных правил, которые помогут сделать день продуктивнее, без утомления ребенка:

  1. Самое главное правило, которое пригодиться не только школьнику, но и любому взрослому человеку, это правильное чередования умственного труда и физического. Необходимо составить распорядок дня так, чтобы после физических нагрузок обязательно шли более спокойные, умственные занятия. Нельзя делать уроки сразу же после возвращения из школы, то же самое касается и дополнительных занятий.
  2. Для решения задач вне школьной программы лучше всего выбирать менее загруженные уроками дни.
  3. Во время занятий нужно убрать все отвлекающие факторы, для того чтобы внимание ребенка не рассеивалось. Если есть возможность решить важные дела перед уроками, то лучше сделать это заранее.
  4. Начинать всегда нужно со сложных задач, а затем переходить к более простым.
  5. Обязательно нужно хвалить ребенка за его достижения и правильно выполненную работу.
  6. Для того чтобы мозг работал, детям нужно давать шанс самостоятельно решать примеры и задачи. Даже если в течение долгого времени он не может найти ответ, не нужно делать очевидных подсказок, пусть он найдет путь решения самостоятельно.
  7. Хорошо запоминать принцип математических решений помогают ассоциации, например, дроби можно представлять как кусочки одного торта или яблока.

§ Задания для 5 класса на тему «Натуральные числа»

Перед тем как познакомиться с обыкновенными и десятичными дробями, необходимо вспомнить что такое натуральные числа. Ими называются числа, используемые в повседневной жизни, например для счета предметов.

✍ 3адание 1

Определить, какое число стоит перед:

Определить, какое число на две единицы больше, чем:

✍ 3адание 2

Написать в виде словосочетаний следующие цифры:

✍ 3адание 3

Представить в виде чисел словосочетания:

  1. триста шестьдесят девять;
  2. одна тысяча двести девяносто три;
  3. десять тысяч шестьсот восемьдесят восемь;
  4. двести пятнадцать тысяч семьсот двадцать четыре.
Читайте также:  Способы получения азота кратко

§ 3адания на тему «Сравнения натуральных чисел»

При помощи сравнения можно определить какое из чисел меньшее, а какое большее. Те что меньше, стоят при счете раньше, чем те, что больше.

✍ 3адание

Расставить 3наки « » или «=» между числами:

  1. 18 32;
  2. 54 16;
  3. 347 524;
  4. 546 546;
  5. 675 23 433;
  6. 563 736 634;
  7. 392 450 81;
  8. 5 453 5 543;
  9. 949 3 432 563;
  10. 101 101 3 455 456.

§ 3адания на тему «Сложение, вычитания натуральных чисел»

✍ 3адание 1

Для того чтобы повторить сложение, вычитание чисел, а также порядок действий при вычислении сложного выражения, можно решить несколько выражений:

  1. 24 • (58 + 114) — 336;
  2. (563 — 260 : 4) + 61 • 37;
  3. 7 354 — (354 + 193 • 4) + (743 — 25);
  4. (1 623 + 570 : 30) — (3 540 — 413 • 7).

Ответ: 1) 3 792, 2) 2 755, 3) 6 946, 4) 993.

✍ 3аданиие 2

В саду росло 208 фруктовых деревьев. Яблонь и слив было 129 штук, а слив и груш — 115. Сколько яблонь росло в саду? Слив? Груш?

Решение: Если известно, что всего деревьев было 208, а яблонь и слив – 129, то можно вычислить количество груш.

1 действие: 208 – 129 = 79 грушевых деревьев.
Стало известно количество грушевых деревьев, значит можно узнать, сколько было слив.
2 действие: 115 – 79 = 36 сливовых деревьев.
После того, как стало известно, сколько было груш и слив, можно высчитать количество яблонь.
3 действие: 208 – (79 + 36) = 93 яблонь.

Ответ:
В саду росло 93 яблони, 79 груш и 36 слив.

§ 3адания на тему «Луч, прямая, отрезок»

Отрезком называется часть прямой ограниченная двумя точками, его длинной считается расстояние между крайними точками. Луч — это часть прямой, которая состоит из точки и всех других точек, лежащих по одну сторону от нее.

✍ 3адание 1

Начертите отрезок АВ, равный 12 см. Отметьте на нем точки по порядку С и D так, чтобы отрезок АС был равен 4 см, а СD — 6 см. Вычислите, чему равен отрезок DВ?

Ответ: 12 — (4 + 6) = 2 см.

✍ 3адание 2

Начертите произвольную прямую и отметьте на ней два точки А, В и С так, чтобы длина отрезка АВ была 7 см, а отрезка ВС — 4 см. Какова длина отрезка АС?

Ответ: 7 + 4 = 11 см.

§ 3адания на тему «Уравнения»

Уравнением называется равенство, в котором один или несколько компонентов являются неизвестными.

✍ 3адание 1

Решить уравнения

  1. 84 • x = 588;
  2. 4 • (18 + x) = 96;
  3. 14x — 8x = 18;
  4. 50 + 6x — 31 = 4;
  5. 13х + 20 — 4х — 16 + х = 54.

Ответ: 1) x=7, 2) х=6, 3) х=3, 4) х=-2,5, 5) х=5.

✍ 3адание 2

Насте 12 лет, что на 4 года меньше, чем возраста Лены. Сколько лет Лене? Решить уравнением.

Решение: Возьмем возраст Лены за x, в таком случае можно составить уравнение:
x – 4 = 12,
х = 12 + 4 = 16.

Ответ: Лене 16 лет.

✍ 3адание 3

Велосипедист за 3 дня проехал 117 км. Какое расстояние он преодолел в первый день, если в последующие два дня он проезжал на 4 км больше, чем в предыдущий? Какое расстояние он преодолел во 2-й и 3-й дни?

Решение: Расстояние которое проехал велосипедист за 1-й день, возьмем за x. В таком случае, второй день будет выглядеть как: x + 4, а третий: (х + 4) + 4.

Можно составить уравнение:

1 день 2 день 3 день

х + (х + 4) +( х + 4 + 4) = 117
3х + 12 = 117
3х = 117 – 12 = 105
х = 105: 3 = 35.

Проверка: 35 + 35 + 4 + 35 +4 + 4 = 117

Ответ: В первый день велосипедист проехал 35 км. Во 2-й день: 35 + 4 = 39 км. В 3-й день: 35 + 4 + 4 = 43 км.

§ 3адания на тему «Квадрат и куб числа»

Квадратом числа называется произведение этого числа самого на себя. Куб — произведение числа самого на себя два раза.

✍ 3адание 1

Найти квадрат чисел:

Ответ: 1) 25, 2) 81, 3) 169, 4) 2025, 5) 10 000, 6) 145 161.

Найти куб чисел:

Ответ: 1) 8, 2) 216, 3) 1 331, 4) 46 656, 5) 474 552, 6) 1 520 875.

✍ 3адание 2

Решить выражения:

  1. (7 + 4) 2 • 6;
  2. 5 352 — (47 2 + 4 3 );
  3. 61 2 — 7 • 2 3 + (20 — 4) 2 ;
  4. ( 5 + 26 ) 2 — ( 6 + 12 ) 2 — 69;
  5. (25 — 16) 3 + (36 — 33) 2 ;
  6. ( 5 + 6 ) 3 — ( 5 + 24) 2 + 727.

Ответ: 1) 726, 2) 3 079, 3) 3 921, 4) 568, 5) 738, 6) 1 217.

§ 3адания на тему «Обыкновенные дроби»

✍ 3адание 1

1. Паша собрал 34 гриба, из которых 16 грибов оказались подосиновиками. Какую часть от всех грибов составляют подосиновики?

Ответ: 8/17.

2. Всего в книге 124 страниц, из которых Толя прочитал ровно половину. Какую часть книги прочитал Толя?

Ответ: 1/2.

3. Оля собрала всего 38 ягод, из которых 17 штук были малиной. Какую часть от общего количества составляют остальные ягоды?

✍ 3адание 2

Начертите отрезок и разделите его на 13 равных частей. Отметьте на данном отрезке: 3/13, 6/13, 10/13.

✍ 3адание 3

1. Полина собрала 36 листьев, из которых березовые составляют 6/18. Сколько березовых листьев собрала Полина?

Ответ: 12.

2. Папа был на рыбалке и поймал всего 45 рыбок, 8/15 было карасей. Сколько карасей поймал папа?

Читайте также:  Плавиковая кислота способы получения

Ответ: 24.

3. Мама стряпала пирожки, всего их получилось 32 штуки. 5/8 от общего количества были с капустой. Сколько пирожков с капустой состряпала мама?

Ответ: 20.

✍ 3адание 4

Сравнить дроби:

§ 3адания на тему «Сложение и вычитание обыкновенных дробей»

✍ 3адание 1

  1. 7⁄30 + 18⁄30 — 6⁄30;
  2. 3⁄19 + 8⁄19 — 4⁄19;
  3. 19⁄25 — ( 21⁄50 + 2⁄25 ) — 6⁄25;
  4. 13⁄76 — 11⁄76 + 49⁄76;
  5. 27⁄129 + ( 12⁄86 — 6⁄43 ) — 7⁄43.

Ответ: 1) 19/30, 2) 7/19, 3) 1/50, 4) 51/76, 5) 2/43.

✍ 3адание 2

Расстояние от дома до школы составляет 4/11 км, а от школы до магазина — 5/11 км. Чему равно расстояние от дома до магазина?

Решение: Для того чтобы найти сколько составляет весь путь, необходимо сложить расстояние от дома до школы и расстояние от школы до магазина 4/11 + 5/11 = 9/11 (км).

Ответ: Расстояние от дома до магазина составляет 9/11 км.

✍ 3адание 3

От рулона ткани первый раз отрезали 7/15 части, а затем еще 5/15, после чего в рулоне осталось 27 м. Сколько метров длина рулона?

Решение: В первую очередь нужно узнать какая часть рулона осталась.

1 действие: 15/15 — 7/15 — 5/15 = 3/15.

Можно сделать вывод, что 27 м составляет 3/15 части от всего рулона. Для того чтобы найти длину всего рулона ткани, необходимо узнать, сколько метров составляет 7/15 и 5/15 частей.

2 действие: 27 : 3 = 9 (м) — в 1 части.

3 действие: 9 • 7 = 63 (м) — составляет 7/15.

4 действие: 9 • 5 = 45 (м) — составляет 5/15.

После того, как стало известно какая длина у каждой из частей, можно вычислить всю длину рулона.

5 действие: 63 + 45 + 27 = 135 (м).

Ответ: длина рулона 135 метров.

§ 3адания на тему «Умножение и деление обыкновенных дробей»

✍ 3адание 1

Ответ: 1) 4/13, 2) 1/3, 3) 2/9, 4) 21/16, 5) 36/55.

✍ 3адание 2

В первом ящике лежит 3/16 от всего количества яблок, а во втором в 3 раза больше. Какая часть от всего количества яблок лежит в обоих ящиках?

Решение: Сначала нужно узнать сколько яблок лежит во втором ящике.

1 действие: 3/16 •3 = 9/16 (яб.).

После того как стало известно сколько яблок лежит во втором ящике, можно узнать их общее количество.

2 действие: 3/16 + 9/16 = 12/16 = 3/4 (яб.)

Ответ: 3/4 части от общего количества яблок лежит в обоих ящиках.

✍ 3адание 3

3а два дня автомобиль поехал 6/10 пути. Известно, что во второй день он проделал путь в 4 раза больше, чем в первый. Cколько проехал автомобиль в первый и второй день?

Решение: Пусть первый день пути будет x, тогда можно составить уравнение x + х • 4 = 6/10.

х + х • 4 = 6/10;
5 • x = 6/10;
х = 6/10 : 5;
х = 3/25 — проехал автомобиль в 1 день.

После того как стало известно, какая часть пути была преодолена в 1 день, можно высчитать 2 день.

2 действие: 3/25 • 4 = 12/25.

Ответ: в первый день автомобиль проехал 3/25, а во второй — 12/25.

§ 3адания на тему «Десятичные дроби»

✍ 3адание 1

Представить обыкновенные дроби в виде десятичных:

Ответ: 1) 0,5; 2) 0,13; 3) 0,2; 4) 0,164; 5) 0,18.

✍ 3адание 2

Начертите отрезок, разделите его на 6 равных частей. Отметьте на нем точки 0,3; 1,5; 2,2; 3,7; 4; 5,6.

§ 3адания на тему «Сложение и вычитание десятичных дробей»

✍ 3адание 1

Ответ: 1) 32,75; 2) 77; 3) 7,28; 4) 31,9; 5) 18,7; 6) 8,933.

✍ 3адание 2

В первый день катер проплыл 3,5 км, во второй на 4,31 км больше, а в третий — на 0,9 км меньше, чем во второй. Сколько всего км проплыл катер за 3 дня?

Решение: Необходимо вычислить, сколько катер проплыл в первый и во второй день.

1 действие: 3,5 + 4,31 = 7,81 (км) — проплыл во второй день.

2 действие: 7,81 — 0,9 = 6,91 (км) — проплыл в третий день.

После того как стало известно, сколько было пройдено за каждый день, можно узнать весь путь.

3 действие: 3,5 + 7,81 + 6,91 = 18,22 (км).

Ответ: за три дня катер проплыл 18,22 км.

§ 3адания на тему «Умножение и деление десятичных дробей»

✍ 3адание 1

Ответ: 1) 46,704; 2) 274,512; 3) 19,544; 4) 2,125; 5) 2,7; 6) 9,54.

✍ 3адание 2

3агадано число, если его увеличить в 3 раза, а затем прибавить 2,16, то получиться 27,96. Какое число было загадано?

Решение: Пусть неизвестное число будет x, тогда можно составить уравнение х • 3 + 2,16 = 27,96.

х • 3 + 2,16 = 27,96;

Ответ: было загадано число 8,6.

✍ 3адание 3

Расстояние между населенными пунктами равно 53,7 км. Навстречу друг другу вышли два пешехода, скорость первого 3,8 км/ч, второго — 4,6 км/ч. Какое расстояние будет между ними через 2,7 часа?

Решение: Нужно вычислить, какое расстояние пешеходы пройдут за 2,7 часа.

1 действие: 3,8 • 2,7 = 10,26 (км) — пройдет первый пешеход.

2 действие: 4,6 • 2,7 = 12,42 (км) — пройдет второй пешеход.

После того как стало известно, сколько прошли пешеходы, можно высчитать, какой путь им еще нужно преодолеть до встречи друг с другом.

3 действие: 53,5 — 10,26 — 12,42 = 30,82 (км).

Ответ: через 2,7 часа между пешеходами будет 30,82 км.

Источник

Оцените статью
Разные способы