Сочетания
Сочетаниями называют различные комбинации из объектов, которые выбраны из множества
различных объектов, и которые отличаются друг от друга хотя бы одним объектом. Иными словами, отдельно взятое сочетание – это уникальная выборка из
элементов, в которой не важен их порядок (расположение). Общее же количество таких уникальных сочетаний рассчитывается по формуле
.
В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?
Решение: прежде всего, снова обращаю внимание на то, что по логике условия, детали считаются различными– даже если они на самом деле однотипны и визуально одинаковы
(в этом случае их можно, например, пронумеровать).
В задаче речь идёт о выборке из 4-х деталей, в которой не имеет значения их «дальнейшая судьба» – грубо говоря, «просто выбрали 4 штуки и всё». Таким образом, у нас имеют место сочетания деталей. Считаем их количество:
Здесь, конечно же, не нужно ворочать огромные числа .
В похожей ситуации я советую использовать следующий приём: в знаменателе выбираем наибольший факториал (в данном случае ) и сокращаем на него дробь. Для этого числитель следует представить в виде
. Распишу очень подробно:
способами можно взять 4 детали из ящика.
Ещё раз: что это значит? Это значит, что из набора 15-ти различных деталей можно составить одну тысячу триста шестьдесят пять уникальных сочетания 4-х деталей. То есть, каждая такая комбинация из 4-х деталей будет отличаться от других комбинаций хотя бы одной деталью.
Ответ: 1365 способами
Формуле необходимо уделить самое пристальное внимание, поскольку она является «хитом» комбинаторики. При этом полезно понимать и без всяких вычислений записывать «крайние» значения:
. Применительно к разобранной задаче:
– единственным способом можно взять ни одной детали;
способами можно взять 1 деталь (любую из 15-ти);
способами можно взять 14 деталей (при этом какая-то одна из 15-ти останется в ящике);
– единственным способом можно взять все пятнадцать деталей.
Сколькими способами из колоды в 36 карт можно выбрать 3 карты?
Это пример для самостоятельного решения. Чем приятны многие комбинаторные задачи, так это краткостью – главное, разобраться в сути.
Источник
Методическая разработка «УЧИМСЯ РЕШАТЬ ЗАДАЧИ ПО КОМБИНАТОРИКЕ»
УЧИМСЯ РЕШАТЬ ЗАДАЧИ ПО КОМБИНАТОРИКЕ
В данной методразработке мы коснёмся элементов комбинаторики , которые потребуются для дальнейшего изучения теории вероятностей . Следует отметить, что комбинаторика является самостоятельным разделом высшей математики
В узком смысле комбинаторика – это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа – люди, звери, грибы, растения, насекомые и т.д. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение).
Перестановками называют комбинации, состоящие из одних и тех же различных объектов и отличающиеся только порядком их расположения. Количество всех возможных перестановок выражается формулой
Отличительной особенностью перестановок является то, что в каждой из них участвует ВСЁ множество, то есть, все объектов.
Сколькими способами можно рассадить 5 человек за столом?
Решение : используем формулу количества перестановок:
Ответ : 120 способами
Сколько четырёхзначных чисел можно составить из четырёх карточек с цифрами 0, 5, 7, 9?
В учебниках обычно даётся лаконичное и не очень понятное определение сочетаний, поэтому, в моих устах формулировка будет не особо рациональной, но, надеюсь, доходчивой:
Сочетаниями называют различные комбинации из объектов, которые выбраны из множества
различных объектов, и которые отличаются друг от друга хотя бы одним объектом. Иными словами, отдельно взятое сочетание – это уникальная выборка из
элементов, в которой не важен их порядок (расположение). Общее же количество таких уникальных сочетаний рассчитывается по формуле
.
В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?
Решение : прежде всего детали считаются различными – даже если они на самом деле однотипны и визуально одинаковы (в этом случае их можно, например, пронумеровать) .
В задаче речь идёт о выборке из 4-х деталей, в которой не имеет значения их «дальнейшая судьба» – грубо говоря, «просто выбрали 4 штуки и всё». Таким образом, у нас имеют место сочетания деталей. Считаем их количество:
Здесь, конечно же, не нужно ворочать огромные числа .
В похожей ситуации я советую использовать следующий приём: в знаменателе выбираем наибольший факториал (в данном случае ) и сокращаем на него дробь. Для этого числитель следует представить в виде
.
способами можно взять 4 детали из ящика.
Ещё раз: что это значит? Это значит, что из набора 15-ти различных деталей можно составить одну тысячу триста шестьдесят пять уникальных сочетания 4-х деталей. То есть, каждая такая комбинация из 4-х деталей будет отличаться от других комбинаций хотя бы одной деталью.
Ответ : 1365 способами
Формуле необходимо уделить самое пристальное внимание, поскольку она является «хитом» комбинаторики. При этом полезно понимать и без всяких вычислений записывать «крайние» значения:
. Применительно к разобранной задаче:
– единственным способом можно взять ни одной детали;
способами можно взять 1 деталь (любую из 15-ти);
способами можно взять 14 деталей (при этом какая-то одна из 15-ти останется в ящике);
– единственным способом можно взять все пятнадцать деталей.
Сколькими способами из колоды в 36 карт можно выбрать 3 карты?
Размещениями называют различные комбинации из объектов, которые выбраны из множества
различных объектов, и которые отличаются друг от друга как составом объектов в выборке, так и их порядком . Количество размещений рассчитывается по формуле
Боря, Дима и Володя сели играть в «очко». Сколькими способами им можно сдать по одной карте? (колода содержит 36 карт)
Решение : здесь важно не только то, какие три карты будут извлечены из колоды, но и то, КАК они будут распределены между игроками. По формуле размещений:
способами можно раздать 3 карты игрокам.
Есть и другая схема решения, которая, с моей точки зрения, даже понятнее:
способами можно извлечь 3 карты из колоды.
Теперь давайте рассмотрим, какую-нибудь одну из семи тысяч ста сорока комбинаций, например: король пик, 9 червей , 7 червей. Выражаясь комбинаторной терминологией, эти 3 карты можно «переставить» между Борей, Димой и Володей способами:
КП, 9Ч, 7Ч;
КП, 7Ч, 9Ч;
9Ч, КП, 7Ч;
9Ч, 7Ч, КП;
7Ч, КП, 9Ч;
7Ч, 9Ч, КП.
И аналогичный факт справедлив для любого уникального набора из 3-х карт. А таких наборов, не забываем, мы насчитали .
Найденное количество сочетаний следует умножить на шесть:
способами можно сдать по одной карте 3-м игрокам.
В студенческой группе 23 человека. Сколькими способами можно выбрать старосту и его заместителя?
Правило сложения и правило умножения комбинаций
Студенческая группа состоит из 23 человек, среди которых 10 юношей и 13 девушек. Сколькими способами можно выбрать 2-х человек одного пола?
Решение : в данном случае не годится подсчёт количества сочетаний , поскольку множество комбинаций из 2-х человек включает в себя и разнополые пары.
Условие «выбрать 2-х человек одного пола» подразумевает, что необходимо выбрать двух юношей или двух девушек, и уже сама словесная формулировка указывает на верный путь решения:
способами можно выбрать 2-х юношей;
способами можно выбрать 2-х девушек.
Таким образом, двух человек одного пола (без разницы – юношей или девушек) можно выбрать: способами.
Сколько существует трёхзначных чисел, которые делятся на 5?
Решение : для наглядности обозначим данное число тремя звёздочками: ***
Комбинации будем считать по разрядам – слева направо :
В разряд сотен можно записать любую из цифр (1, 2, 3, 4, 5, 6, 7, 8 или 9). Ноль не годится, так как в этом случае число перестаёт быть трёхзначным.
А вот в разряд десятков («посерединке») можно выбрать любую из 10-ти цифр: .
По условию, число должно делиться на 5. Число делится на 5, если оно заканчивается на 5 либо на 0. Таким образом, в младшем разряде нас устраивают 2 цифры.
Итого, существует : трёхзначных чисел, которые делятся на 5.
При этом произведение расшифровывается так: «9 способами можно выбрать цифру в разряд сотен и 10 способами выбрать цифру в разряд десятков и 2 способами в разряд единиц »
Или ещё проще: « каждая из 9-ти цифр в разряде сотен комбинируется с каждой из 10-ти цифр разряда десятков и с каждой из двух цифр в разряде единиц ».
Источник