- Определитель матрицы онлайн
- Предупреждение
- Примеры вычисления определителя матрицы
- Онлайн калькулятор. Определитель матрицы. Детерминант матрицы.
- Найти определитель (детерминант) матрицы
- Ввод данных в калькулятор для вычисления определителя (детерминанта) матриц
- Дополнительные возможности калькулятора для вычисления определителя (детерминанта) матриц
- Теория. Определитель (детерминант) матрицы.
- Вычисление определителя матрицы 2×2
- Правило треугольника для вычисления определителя матрицы 3×3
- Вычисление определителя матрицы произвольного размера
- Методы вычисления определителя третьего порядка
- Методы вычисления определителей
- Вычисления определителей второго порядка
- Методы вычисления определителей третьего порядка
- Правило треугольника
- Правило Саррюса
- Разложение определителя по строке или столбцу
- Разложение определителя по элементам строки или столбца
- Приведение определителя к треугольному виду
- Теорема Лапласа
Определитель матрицы онлайн
Данный онлайн калькулятор вычисляет определитель матрицы. Дается подробное решение. Для вычисления определителя матрицы выбирайте порядок (размер) квадратной матрицы. Введите данные в ячейки. Выберите метод решения и нажмите на кнопку «Вычислить». Теоретическую часть смотрите на странице определитель матрицы.
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Примеры вычисления определителя матрицы
Пример 1. Найти определитель матрицы
Для вычисления определителя матрицы, приведем матрицу к верхнему треугольному виду.
Выбираем самый большой по модулю ведущий элемент столбца 1. Для этого меняем местами строки 1 и 2. При этом меняется знак определителя на «−»:
Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/78,-2/78 соответственно:
Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -5928/9048:
Мы привели матрицу к верхнему треугольному виду. Определитель матрицы равен произведению всех элементов главной диагонали (учитывая знак определителя):
Пример 2. Найти определитель матрицы A, разложением определителя по первой строке:
Для вычисления определителя матрицы методом разложения по первой строке, вычисляем произведение каждого элемента первой строки на соответствующее алгебраическое дополнение и суммируем полученные результаты:
Источник
Онлайн калькулятор. Определитель матрицы. Детерминант матрицы.
Используя этот онлайн калькулятор для вычисления определителя (детерминанта) матриц, вы сможете очень просто и быстро найти определитель (детерминант) матрицы.
Воспользовавшись онлайн калькулятором для вычисления определителя (детерминанта) матриц, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на транспонирование матриц, а также закрепить пройденный материал.
Найти определитель (детерминант) матрицы
Введите значения Матрицы:
Ввод данных в калькулятор для вычисления определителя (детерминанта) матриц
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора для вычисления определителя (детерминанта) матриц
- Между полями для ввода можно перемещаться нажимая клавиши , , и на клавиатуре.
Теория. Определитель (детерминант) матрицы.
Вычисление определителя матрицы 2×2
Для матрицы 2×2 значение определителя равно разности произведений элементов главной и побочной диагоналей:
∆ = |
| = a 11· a 22 — a 12· a 21 |
Правило треугольника для вычисления определителя матрицы 3×3
Для матрицы 3×3 значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.
+ | – |
∆ = |
| = |
Вычисление определителя матрицы произвольного размера
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Источник
Методы вычисления определителя третьего порядка
Определители и способы их вычисления
Определитель – это число, соответствующее квадратной матрице, вычисленное определенным образом.
Определителем второго порядка называется число, определяемое равенством:
.
Пример 3.1.
.
Определителем третьего порядка называется число, определяемое квадратной матрицей третьего порядка.
1.Метод треугольников (метод Саррюса)
То есть, если элементы определителя третьего порядка записать в таблицу , то правило его вычисления может быть представлено на рисунке 1, и определитель будет равен алгебраической сумме всех произведений, причем произведения первой таблицы берут со знаком “+”, а второй – со знаком “–”.
|
|
Рис. 1 |
Это правило называется правилом Саррюса.
2. Метод дописывания двух столбцов.
Этот способ вычисления определителя третьего порядка заключается в дописывании первых двух столбцов определителя и нахождении суммы произведений по главной диагонали и параллелях к ней за вычетом суммы произведений побочной диагонали и параллелях к ней, т.е.
Пример 3.2. Вычислить определитель двумя способами
3. Третий способ вычисления определителя основан на теореме разложения.
Минором элемента определителя называется определитель, полученный из данного путем вычеркивания
-й строки и
-го столбца, на пересечении которых расположен этот элемент.
Например, минором элемента определителя
,
т.е. из исходного определителя были вычеркнуты вторая строка и третий столбец.
Алгебраическим дополнением элемента
называется минор этого элемента, умноженный на
. То есть, если сумма номеров строки и столбца, на пересечении которых стоит этот элемент является четным числом, то минор берут со знаком “+”, а если нечетным, то со знаком “–”.
При этом полезно иметь в виду следующую схему:
| где знаком плюс отмечены места тех элементов, для которых алгебраические дополнения равны минорам, взятым с их собственным знаком; и знаком минус те, для которых алгебраические дополнения равны минорам, взятым с противоположным знаком. |
Теорема разложения | Определитель равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения. |
Пример 3.3. Вычислить определитель путем разложения: а) по второй строке; б) по третьему столбцу.
а)
б)
Замечание. Если в задании не указано, по какому столбцу (строке) проводить разложение, то лучше выбирать столбец (строку) с большим числом нулей.
Определитель -го порядка задается квадратной таблицей чисел (элементов определителя), имеющей
строк и
столбцов, обозначается символом
.
Вычисление определителей порядка больше 3, рекомендуется проводить с помощью теоремы разложения.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
Методы вычисления определителей
В общем случае правило вычисления определителей $n$-го порядка является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.
Вычисления определителей второго порядка
Чтобы вычислить определитель матрицы второго порядка, надо от произведения элементов главной диагонали отнять произведение элементов побочной диагонали:
Задание. Вычислить определитель второго порядка $\left| \begin
Решение. $\left| \begin
Методы вычисления определителей третьего порядка
Для вычисления определителей третьего порядка существует такие правила.
Правило треугольника
Схематически это правило можно изобразить следующим образом:
Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «плюс»; аналогично, для второго определителя — соответствующие произведения берутся со знаком «минус», т.е.
Методы вычисления определителей не по зубам? Тебе ответит эксперт через 10 минут!
Задание. Вычислить определитель $\left| \begin
Решение. $\left| \begin
$$+3 \cdot 3 \cdot 1-(-1) \cdot 1 \cdot 1-3 \cdot(-2) \cdot 3-4 \cdot 3 \cdot(-2)=54$$
Правило Саррюса
Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком «плюс»; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком «минус»:
Задание. Вычислить определитель $\left| \begin
Решение.
$$+(-1) \cdot 4 \cdot(-2)-(-1) \cdot 1 \cdot 1-3 \cdot 3 \cdot(-2)-3 \cdot 4 \cdot(-2)=54$$
Разложение определителя по строке или столбцу
Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.
Задание. Разложив по первой строке, вычислить определитель $\left| \begin
Решение. $\left| \begin
Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.
Задание. Вычислить определитель $\left| \begin
Решение. Выполним следующие преобразования над строками определителя: из второй строки отнимем четыре первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель, равный данному.
Определитель равен нулю, так как вторая и третья строки являются пропорциональными.
Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение к треугольному виду, либо с помощью теоремы Лапласа.
Разложение определителя по элементам строки или столбца
Задание. Вычислить определитель $\left| \begin
Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй — пять третьих и от четвертой — три третьих строки, получаем:
Полученный определитель разложим по элементам первого столбца:
Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей — вторую:
$$=4 \cdot(2 \cdot 8-4 \cdot 4)=0$$
Последний и предпоследний определители можно было бы и не вычислять, а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.
Приведение определителя к треугольному виду
С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.
Задание. Вычислить определитель $\Delta=\left| \begin
Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования будет выполнять проще, если элемент $a_<11>$ будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:
Далее получим нули в первом столбце, кроме элемента $a_<11>$ , для этого из третьей строки вычтем две первых, а к четвертой строке прибавим первую, будем иметь:
Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен $\pm 1$ , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):
Далее делаем нули во втором столбце под главной диагональю, для этого поступаем следующим образом: к третьей строке прибавляем три вторых, а к четвертой — две вторых строки, получаем:
Далее из третьей строки выносим (-10) за определитель и делаем нули в третьем столбце под главной диагональю, а для этого к последней строке прибавляем третью:
Ответ. $\Delta=-80$
Теорема Лапласа
Пусть $\Delta$ — определитель $n$-го порядка. Выберем в нем произвольные $k$ строк (или столбцов), причем $k \leq n-1$ . Тогда сумма произведений всех миноров $k$-го порядка, которые содержатся в выбранных $k$ строках (столбцах), на их алгебраические дополнения равна определителю.
Задание. Используя теорему Лапласа, вычислить определитель $\left| \begin
Решение. Выберем в данном определителе пятого порядка две строки — вторую и третью, тогда получаем (слагаемые, которые равны нулю, опускаем):
Источник