Вычислить определитель матрицы способом обратной матрицы

Как вычислить определитель?

В ходе решения задач по высшей математике очень часто возникает необходимость вычислить определитель матрицы. Определитель матрицы фигурирует в линейной алгебре, аналитической геометрии, математическом анализе и других разделах высшей математики. Таким образом, без навыка решения определителей просто не обойтись. Также для самопроверки Вы можете бесплатно скачать калькулятор определителей, он сам по себе не научит решать определители, но очень удобен, поскольку всегда выгодно заранее знать правильный ответ!

Я не буду давать строгое математическое определение определителя, и, вообще, буду стараться минимизировать математическую терминологию, большинству читателей легче от этого не станет. Задача данной статьи – научить Вас решать определители второго, третьего и четвертого порядка. Весь материал изложен в простой и доступной форме, и даже полный (пустой) чайник в высшей математике после внимательного изучения материала сможет правильно решать определители.

Определитель можно вычислить только для квадратной матрицы (более подробно см. Действия с матрицами)

На практике чаще всего можно встретить определитель второго порядка, например: , и определитель третьего порядка, например: .

Определитель четвертого порядка тоже не антиквариат, и к нему мы подойдём в конце урока.

Надеюсь, всем понятно следующее: Числа внутри определителя живут сами по себе, и ни о каком вычитании речи не идет! Менять местами числа нельзя!

(Как частность, можно осуществлять парные перестановки строк или столбцов определителя со сменой его знака, но часто в этом нет никакой необходимости – см. следующий урок Свойства определителя и понижение его порядка)

Таким образом, если дан какой-либо определитель, то ничего внутри него не трогаем!

Обозначения: Если дана матрица , то ее определитель обозначают . Также очень часто определитель обозначают латинской буквой или греческой .

1) Что значит решить (найти, раскрыть) определитель? Вычислить определитель – это значит НАЙТИ ЧИСЛО. Знаки вопроса в вышерассмотренных примерах – это совершенно обыкновенные числа.

2) Теперь осталось разобраться в том, КАК найти это число? Для этого нужно применить определенные правила, формулы и алгоритмы, о чём сейчас и пойдет речь.

Начнем с определителя «два» на «два»:

ЭТО НУЖНО ЗАПОМНИТЬ, по крайне мере на время изучения высшей математики в ВУЗе.

Сразу рассмотрим пример:

Готово. Самое главное, НЕ ЗАПУТАТЬСЯ В ЗНАКАХ.

Определитель матрицы «три на три» можно раскрыть 8 способами, 2 из них простые и 6 — нормальные.

Начнем с двух простых способов

Аналогично определителю «два на два», определитель «три на три» можно раскрыть с помощью формулы:

Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок».
Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:

Читайте также:  Способы оформления конечных результатов индивидуального проекта 10 класс презентация


Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс».
Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:

Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

Теперь рассмотрим шесть нормальных способов для вычисления определителя

Почему нормальных? Потому что в подавляющем большинстве случаев определители требуется раскрывать именно так.

Как Вы заметили, у определителя «три на три» три столбца и три строки.
Решить определитель можно, раскрыв его по любой строке или по любому столбцу.
Таким образом, получается 6 способов, при этом во всех случаях используется однотипный алгоритм.

Определитель матрицы равен сумме произведений элементов строки (столбца) на соответствующие алгебраические дополнения. Страшно? Все намного проще, будем использовать ненаучный, но понятный подход, доступный даже для человека, далекого от математики.

В следующем примере будем раскрывать определитель по первой строке.
Для этого нам понадобится матрица знаков: . Легко заметить, что знаки расположены в шахматном порядке.

Внимание! Матрица знаков – это мое собственное изобретение. Данное понятие не научное, его не нужно использовать в чистовом оформлении заданий, оно лишь помогает Вам понять алгоритм вычисления определителя.

Сначала я приведу полное решение. Снова берем наш подопытный определитель и проводим вычисления:

И главный вопрос: КАК из определителя «три на три» получить вот это вот:
?

Итак, определитель «три на три» сводится к решению трёх маленьких определителей, или как их еще называют, МИНОРОВ. Термин рекомендую запомнить, тем более, он запоминающийся: минор – маленький.

Коль скоро выбран способ разложения определителя по первой строке, очевидно, что всё вращается вокруг неё:

Элементы обычно рассматривают слева направо (или сверху вниз, если был бы выбран столбец)

Поехали, сначала разбираемся с первым элементом строки, то есть с единицей:

1) Из матрицы знаков выписываем соответствующий знак:

2) Затем записываем сам элемент:

3) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит первый элемент:

Оставшиеся четыре числа и образуют определитель «два на два», который называется МИНОРОМ данного элемента (единицы).

Переходим ко второму элементу строки.

4) Из матрицы знаков выписываем соответствующий знак:

5) Затем записываем второй элемент:

6) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит второй элемент:

Оставшиеся четыре числа записываем в маленький определитель.

Ну и третий элемент первой строки. Никакой оригинальности:

7) Из матрицы знаков выписываем соответствующий знак:

8) Записываем третий элемент:

9) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит третий элемент:

Оставшиеся четыре числа записываем в маленький определитель.

Остальные действия не представляют трудностей, поскольку определители «два на два» мы считать уже умеем. НЕ ПУТАЕМСЯ В ЗНАКАХ!

Читайте также:  Способ питания хищных животных называется тест

Аналогично определитель можно разложить по любой строке или по любому столбцу. Естественно, во всех шести случаях ответ получается одинаковым.

Определитель «четыре на четыре» можно вычислить, используя этот же алгоритм.
При этом матрица знаков у нас увеличится:

В следующем примере я раскрыл определитель по четвертому столбцу:

А как это получилось, попробуйте разобраться самостоятельно. Дополнительная информация будет позже. Если кто захочет прорешать определитель до конца, правильный ответ: 18. Для тренировки лучше раскрыть определитель по какому-нибудь другому столбцу или другой строке.

Потренироваться, раскрыть, провести расчёты – это очень хорошо и полезно. Но сколько времени вы потратите на большой определитель? Нельзя ли как-нибудь быстрее и надёжнее? Предлагаю ознакомиться с эффективными методами вычисления определителей на втором уроке – Свойства определителя. Понижение порядка определителя.

Автор: Емелин Александр

(Переход на главную страницу)

«Всё сдал!» — онлайн-сервис помощи студентам

Источник

Решение СЛАУ методом обратной матрицы

Напомним, что решением системы линейных уравнений называется всякая совокупность чисел 1, x2, . xn> , подстановка которых в эту систему вместо соответствующих неизвестных обращает каждое уравнение системы в тождество.
Система линейных алгебраических уравнений обычно записывается как (для 3-х переменных):

2x1-3x2+x3 = 4
-x1+2x2+5x3 = 10
3x1-x2+3x3 = -1
или 2x-3y+z = 4
-z+2y+5z = 10
3x-y+3z = -1

См. также Решение матричных уравнений.

Алгоритм решения

  1. Вычисляется определитель матрицы A . Если определитель равен нулю, то конец решения. Система имеет бесконечное множество решений.
  2. При определителе отличном от нуля, через алгебраические дополнения находится обратная матрица A -1 .
  3. Вектор решения X =1, x2, . xn> получается умножением обратной матрицы на вектор результата B .

Пример №1 . Найти решение системы матричным методом. Запишем матрицу в виде:

2 3 1
-2 1 0
1 2 -2

Вектор B:
B T = (3,-2,-1)
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆ = 2•(1•(-2)-2•0)-(-2•(3•(-2)-2•1))+1•(3•0-1•1) = -21
Итак, определитель -21 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Транспонированная матрица

A T =
2 -2 1
3 1 2
1 0 -2

Алгебраические дополнения.

A1,1 = (-1) 1+1
1 2
0 -2
1,1 = (1•(-2)-0•2) = -2

A1,2 = (-1) 1+2
3 2
1 -2
1,2 = -(3•(-2)-1•2) = 8

A1,3 = (-1) 1+3
3 1
1 0
1,3 = (3•0-1•1) = -1

A2,1 = (-1) 2+1
-2 1
0 -2
2,1 = -(-2•(-2)-0•1) = -4

A2,2 = (-1) 2+2
2 1
1 -2
2,2 = (2•(-2)-1•1) = -5

A2,3 = (-1) 2+3
2 -2
1 0
2,3 = -(2•0-1•(-2)) = -2

A3,1 = (-1) 3+1
-2 1
1 2
3,1 = (-2•2-1•1) = -5

A3,2 = (-1) 3+2
2 1
3 2
3,2 = -(2•2-3•1) = -1

A3,3 = (-1) 3+3
2 -2
3 1
3,3 = (2•1-3•(-2)) = 8

Обратная матрица:

A -1 = -1/21
-2 8 -1
-4 -5 -2
-5 -1 8

Вектор результатов X = A -1 • B

X = -1/21
-2 8 -1
-4 -5 -2
-5 -1 8
·
3
-2
-1

X T = (1,0,1)
x1 = -21 / -21 = 1
x2 = 0 / -21 = 0
x3 = -21 / -21 = 1
Проверка:
2•1+3•0+1•1 = 3
-2•1+1•0+0•1 = -2
1•1+2•0+-2•1 = -1

Запишем матрицу в виде:

Вектор B:
B T = (1,2,3,4)
Главный определитель
Минор для (1,1):

= 3•(3•2-6•2)-5•(3•2-6•1)+7•(3•2-3•1) = 3
Определитель минора
∆ = 2•(-3)-3•0+5•3-4•3 = -3

Вектор результатов X
X = A -1 ∙ B

Пример №3 . Систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы. Сделать проверку полученного решения.
Решение:xls

Пример №4 . Записать систему уравнений в матричной форме и решить с помощью обратной матрицы.
Решение:xls

Пример №5 . Дана система трех линейных уравнений с тремя неизвестными. Требуется: 1) найти ее решение с помощью формул Крамера; 2) записать систему в матричной форме и решить ее средствами матричного исчисления.
Методические рекомендации. После решения методом Крамера, найдите кнопку «Решение методом обратной матрицы для исходных данных». Вы получите соответствующее решение. Таким образом, данные вновь заполнять не придется.
Решение. Обозначим через А — матрицу коэффициентов при неизвестных; X — матрицу-столбец неизвестных; B — матрицу-столбец свободных членов:

-1 3 0
3 -2 1
2 1 -1

Вектор B:
B T =(4,-3,-3)
С учетом этих обозначений данная система уравнений принимает следующую матричную форму: А*Х = B.
Если матрица А — невырожденная (ее определитель отличен от нуля, то она имеет обратную матрицу А -1 . Умножив обе части уравнения на А -1 , получим: А -1 *А*Х = А -1 *B, А -1 *А=Е.
Это равенство называется матричной записью решения системы линейных уравнений. Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А -1 .
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆=-1•(-2•(-1)-1•1)-3•(3•(-1)-1•0)+2•(3•1-(-2•0))=14
Итак, определитель 14 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Пусть имеем невырожденную матрицу А:

A=
a11 a12 a13
a21 a22 a23
a31 a32 a33

Тогда:

A=1/∆
A11 A21 A31
A12 A22 A32
A13 A23 A33

где Aij — алгебраическое дополнение элемента aij в определителе матрицы А, которое является произведением (—1) i+j на минор (определитель) n-1 порядка, полученный вычеркиванием i-й строки и j-го столбца в определителе матрицы А.
Транспонированная матрица

A T =
-1 3 2
3 -2 1
0 1 -1

Вычисляем алгебраические дополнения.

A1,1=(-1) 1+1
-2 1
1 -1

1,1=(-2•(-1)-1•1)=1

A1,2=(-1) 1+2
3 1
0 -1

1,2=-(3•(-1)-0•1)=3

A1,3=(-1) 1+3
3 -2
0 1

1,3=(3•1-0•(-2))=3

A2,1=(-1) 2+1
3 2
1 -1

2,1=-(3•(-1)-1•2)=5

A2,2=(-1) 2+2
-1 2
0 -1

2,2=(-1•(-1)-0•2)=1

A2,3=(-1) 2+3
-1 3
0 1

2,3=-(-1•1-0•3)=1

A3,1=(-1) 3+1
3 2
-2 1

3,1=(3•1-(-2•2))=7

A3,2=(-1) 3+2
-1 2
3 1

3,2=-(-1•1-3•2)=7

A3,3=(-1) 3+3
-1 3
3 -2

3,3=(-1•(-2)-3•3)=-7
Обратная матрица

A -1 =1/14
1 3 3
5 1 1
7 7 -7

Вектор результатов X
X=A -1 • B

X=1/14
1 3 3
5 1 1
7 7 -7
·
4
-3
-3
X=1/14
-3))
X=1/14
-14
14
28

X T =(-1,1,2)
x1= -14 / 14=-1
x2= 14 / 14=1
x3= 28 / 14=2
Проверка.
-1•-1+3•1+0•2=4
3•-1+-2•1+1•2=-3
2•-1+1•1+-1•2=-3
doc:xls
Ответ: -1,1,2.

Пример №6 . Решить неоднородную систему линейных алгебраических уравнений методом обратной матрицы.

Источник

Читайте также:  Способы восстановления нарушенных прав граждан
Оцените статью
Разные способы