Вычислить двумя способами по формуле муавра

Комплексные числа

В математике кроме натуральных, рациональных и вещественных чисел имеется ещё один вид, называемый комплексными числами. Такое множество принято обозначать символом $ \mathbb $.

Рассмотрим, что из себя представляет комплексное число. Запишем его таким образом: $ z = a + ib $, в котором мнимая единица $ i = \sqrt <-1>$, числа $ a,b \in \mathbb $ вещественные.

Если положить $ b = 0 $, то комплексное число превращается в вещественное. Таким образом, можно сделать вывод, что действительные числа это частный случай комплексных и записать это в виде подмножества $ \mathbb \subset \mathbb $. К слову говоря также возможно, что $ a = 0 $.

Принято записывать мнимую часть комплексного числа как $ Im(z) = b $, а действительную $ Re(z) = a $.

Введем понятие комплексно-сопряженных чисел. К каждому комплексному числу $ z = a+ib $ существует такое, что $ \overline = a-ib $, которое и называется сопряженным. Такие числа отличаются друг от друга только знаками между действительной и мнимой частью.

Формы

Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:

  1. Алгебраическая $ z = a+ib $
  2. Показательная $ z = |z|e^ $
  3. Тригонометрическая $ z = |z|\cdot(\cos(\varphi)+i\sin(\varphi)) $

Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.

Изображение

Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:

Видим, что $ a,b \in \mathbb $ расположены на соответствующих осях плоскости.

Комплексное число $ z = a+ib $ представляется в виде вектора $ \overline $.

Аргумент обозначается $ \varphi $.

Модуль $ |z| $ равняется длине вектора $ \overline $ и находится по формуле $ |z| = \sqrt $

Аргумент комплексного числа $ \varphi $ нужно находить по различным формулам в зависимости от полуплоскости, в которой лежит само число.

Вычислить сумму и разность заданных комплексных чисел:

$$ z_1 = 3+i, z_2 = 5-2i $$

Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:

$$ z_1 + z_2 = (3+i) + (5-2i) = (3+5)+(i-2i) = 8 — i $$

Аналогично выполним вычитание чисел:

$$ z_1 — z_2 = (3+i) — (5-2i) = (3-5)+(i+2i) = -2 + 3i $$

Ответ $$ z_1 + z_2 = 8 — i; z_1 — z_2 = -2 + 3i $$

Выполнить умножение и деление комплексных чисел:

$$ z_1 = 3+i, z_2 = 5-2i $$

$$ z_1 \cdot z_2 = (3+i) \cdot (5-2i) = $$

Просто на просто раскроем скобки и произведем приведение подобных слагаемых, так же учтем, что $ i^2 = -1 $:

$$ = 15 — 6i + 5i -2i^2 = 15 — i — 2\cdot(-1) = $$

$$ = 15 — i + 2 = 17 — i $$

Так, теперь разделим первое число на второе:

Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:

Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:

Пример 3
Ответ
$$ z_1 \cdot z_2 = 17 — i; \frac = \frac<13> <29>+ \frac<11><29>i $$

Для возведения в квадрат достаточно умножить число само на себя:

$$ z^2 = (3+3i)^2 = (3+3i)\cdot (3+3i) = $$

Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:

$$ =9 + 9i + 3i\cdot 3 + 9i^2 = 9 + 18i — 9 = 18i $$

Получили ответ, что $$ z^2 = (3+i)^2 = 18i $$

В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.

Вычисляем значение модуля:

Найдем чем равен аргумент:

$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$

Записываем в тригонометрическом виде:

Возводим в степень $ n = 7 $:

Преобразуем в алгебраическую форму для наглядности:

$$ = 3^7 \sqrt<2>^6 (1-i) = 3^7 \cdot 8(1-i) = $$

$$ = 2187 \cdot 8 (1-i) = 17496(1-i) $$

$$ z^2 = (3+i)^2 = 18i $$ $$ z^7 = 17496(1-i) $$

Пример 4
Возвести комплексное число $ z = 3+3i $ в степень: a) $ n=2 $ б) $ n=7 $
Решение

Представим число в тригонометрической форме. Найдем модуль и аргумент:

$$ \varphi = arctg \frac<0> <-1>+\pi = arctg 0 + \pi = \pi $$

Получаем: $$ z = (\cos \pi + i\sin \pi) $$

Используем знакомую формулу Муавра для вычисления корней любой степени:

Так как степень $ n = 3 $, то по формуле $ k = 0,1,2 $:

Пример 5
Извлечь корень $ \sqrt[3] <-1>$ над множеством $ \mathbb $
Решение

Решать будем по общей формуле, которую все выучили в 8 классе. Находим дискриминант $$ D = b^2 — 4ac = 2^2 — 4\cdot 1 \cdot 2 = 4-8 = -4 $$

Источник

Формула Муавра

Содержание:

Задание комплексных чисел в тригонометрической форме удобно при выполнении над числами действий умножения, деления, возведения в степень и извлечения корня.

Найдем произведение двух комплексных чисел, записанных в тригонометрической форме; пусть

Выражения, стоящие в круглых скобках, можно упростть с помощью известных формул (115.4), (116.1):

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Доказано правило: для умножения чисел, заданных в тригонометрической форме у их модули надо перемножить, а аргументы сложить.

Это правило остается верным для любого количества сомножителей.

Примеры с решением

Пример 1.

Найти произведение чисел

Решение:

Так как деление—действие, обратное умножению, то легко вывести следующее правило: для выполнения деления двух комплексных чисел, заданных в тригонометрической форме, следует их модули разделитьу а аргументы вычесть:

Возможно вам будут полезны данные страницы:

Пример 2.

Найти частное от деления числа на число

Решение:

Находим по формуле (17.2):

Используем теперь равенство (17,1) для возведения произвольного комплексного числа в натуральную степень Для этого придется модуль этого числа взять множителем раз и аргумент взять слагаемым раз. Это приводит к равенству

Равенство (17.3) называется формулой Муавра. Из нее следует, что для возведения комплексного числа в любую натуральную степень его модуль нужно возвести в эту степень у а аргумент умножить на показатель степени.

Пример 3.

Вычислить

Решение:

В соответствии с формулой Муавра (17.3)

Если число задано в алгебраической форме то для возведения его в степень с помощью формулы Муавра надо предварительно записать его в тригонометрической форме.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Источник

Математический портал

  • Вы здесь:
  • Home
  • Комплексные числа
  • Формули Эйлера и Муавра. Корень n-й степени с комплексного числа.

Формулы Эйлера и Муавра. Корень n-й степени с комплексного числа.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Формулы Эйлера:

Формула Муавра:

Если $z=re^, $ то $$z^n=r^ne^,$$ или, в тригонометричской форме:

$$z^n=r^n(\cos n\varphi+i\sin n\varphi).$$

Пусть $a=re^, \,\, a\neq 0,-$ фиксированное комплексное число. Тогда уравнение $z^n=a,\,\,\, n\in N,$ имеет в точности $n$ различных решений $z_0, z_1, . z_$ причем эти решения даются формулой $$z_k=\sqrt[n]e^+\frac<2\pi>k\right)>=\sqrt[n]\left(\cos\frac<\varphi+2\pi k>+i\sin\frac<\varphi+2\pi k>\right),$$ $$k=0, 1, . , n-1.$$ (здесь $\sqrt r$ действительное положительное число) Числа $z_k, \,\, k=0, 1, . n-1,$ называются корнями $n-$й степени из комплексного числа $a$ и обозначаются символом $\sqrt[n].$

Примеры:

1.483. Доказать формулу Эйлера $\cos\varphi=\frac+e^<-i\varphi>><2>.$

Решение.

Известно, что $e^=\cos<\varphi>+i\sin\varphi.$ Соответственно, $e^<-i\varphi>=\cos<(-\varphi)>+i\sin(-\varphi)=\cos\varphi-i\sin\varphi.$

Отсюда находим $e^+e^<-i\varphi>=\cos\varphi+i\sin\varphi+\cos\varphi-i\sin\varphi=2\cos\varphi.$

Cледовательно, $\cos\varphi=\frac+e^<-i\varphi>><2>.$ Что и требовалось доказать.

Используя формулу Муавра, вычислить следующие выражения:

1.485. $(1+i)^<10>.$

Решение.

Запишем число $z=1+i$ в показательной форме:

Поскольку число $z$ находится в первой четверти, то

Таким образом, мы можем записать число $z=1+i$ в показательной форме: $z=\sqrt 2 e^<4>>.$

Теперь, используя формулу Муавра можно найти $z^<10>:$

Ответ: $(1+i)^<10>=32i.$

1.491. Используя формулу Муавра, выразить через $\cos\varphi$ и $\sin\varphi$ функцию$\cos 3\varphi.$

Решение.

$$+\left.\cos^3(-\varphi)-3i\cos^2(-\varphi)\sin(-\varphi)+3i^2\cos(-\varphi)\sin^2(-\varphi)-i^3\sin^3(-\varphi)\right)=$$ $$=\frac<1><2>\left(\cos^3<\varphi>+3i(1-\sin^2\varphi)\sin\varphi-3\cos\varphi(1-\cos^2\varphi)\right.-i\sin^3\varphi+$$ $$+\left.\cos^3\varphi+3i(1-\sin^2\varphi)\sin\varphi-3\cos\varphi(1-\cos^2\varphi)-i\sin^3\varphi\right)=$$ $$=\cos^3\varphi+3i\sin\varphi-3i\sin^3\varphi-3\cos\varphi+3\cos^3\varphi-i\sin^3\varphi=$$ $$=4\cos^3\varphi-3\cos\varphi+3i\sin\varphi-4i\sin^3\varphi.$$

Ответ: $4\cos^3\varphi-3\cos\varphi+3i\sin\varphi-4i\sin^3\varphi.$

1.495. Найти и изобразить на комплексной плоскости все корни 2-й, 3-й и 4-й степени из единицы.

Решение.

Запишем число 1 в показательной форме:

$1=1e^<0i>.$ То есть $r=1, \varphi=0.$

Далее, пользуясь формулой Муавра вычисляем корень второй степени из единицы:

Вычисляем корень третьей степени из единицы:

Вычисляем корень четвертой степени из единицы:

Ответ: Корни второй степени: $z_0=1;\,\, z_1 =-1.$ Корни третьей сепени: $z_0=1;\,\, z_1=-\frac<1><2>+i\frac<\sqrt 3><2>;\,\, z_2=-\frac<1><2>-i\frac<\sqrt 3><2>.$ Корни четвертой степени: $z_0=1;\,\, z_1=i;\,\, z_2=-1;\,\, z_3=-i.$

Найти все значения корней:

Решение.

Запишем число $z=-1+i\sqrt 3$ в показательной форме:

Поскольку число $z$ находится во второй четверти, то

Таким образом, мы можем записать число $z=-1+i\sqrt 3$ в показательной форме: $z=2 e^<3>>.$

Пользуясь формулой Муавра вычисляем корень второй степени из единицы:

Ответ: $\pm\frac<\sqrt 2><2>(1+i\sqrt 3)$

1.501. $\sqrt [5]<-1-i>.$

Решение.

Запишем число $z=-1-i 3$ в показательной форме:

Поскольку число $z$ находится в третьей четверти, то

Таким образом, мы можем записать число $z=-1-i$ в показательной форме: $z=\sqrt 2 e^<4>>.$

Пользуясь формулой Муавра вычисляем корень второй степени из единицы:

1.483. Доказать формулу Эйлера $\sin\varphi=\frac-e^<-i\varphi>><2i>.$

Используя формулу Муавра, вычислить следующие выражения:

Используя формулу Муавра, выразить через $\cos\varphi$ и $\sin\varphi$ следующие функции:

Источник

Читайте также:  Какие таблетки помогают повысить потенцию у мужчин естественными способами
Оцените статью
Разные способы
Пример 6
Решить квадратное уравнение $ x^2 + 2x + 2 = 0 $ над $ \mathbb $
Решение