- Свойства сложения и вычитания
- Свойства сложения
- Свойства вычитания
- Примеры использования свойств сложения и вычитания
- Калькулятор суммы последовательных чисел
- Разложение чисел на составляющие
- Совершенные числа
- Последовательные числа
- Примеры
- Суммирование последовательных чисел
- Разложение чисел на сумму последовательных элементов
- Заключение
- Порядок действий в математике
- Основные операции в математике
- Порядок вычисления простых выражений
- Действия первой и второй ступени
- Порядок вычислений в выражениях со скобками
- Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями
Свойства сложения и вычитания
О чем эта статья:
Свойства сложения
Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число
Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.
Слагаемые — это числа, единицы которых складываются.
Сумма — это число, которое получается в результате сложения.
Рассмотрим пример 2 + 5 = 7, в котором:
- 2 — это первое слагаемое,
- 5 — второе слагаемое,
- 7 — это сумма.
При этом саму запись (2 + 5) можно тоже назвать суммой.
Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.
Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.
- Переместительное свойство сложения
От перестановки мест слагаемых сумма не меняется.
a + b = b + a - Сочетательное свойство сложения
Чтобы к сумме двух чисел прибавить третье нужно к первому числу прибавить сумму второго и третьего числа.
(a + b) + c = a + (b + c) - Свойство нуля при сложении
Если к числу прибавить нуль, получится само число.
a + 0 = 0 + a = a
Свойства вычитания
Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.
Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.
Уменьшаемое — это число, из которого вычитают.
Вычитаемое — это число, которое вычитают.
Разность — это число, которое получается в результате вычитания.
Рассмотрим пример 9 — 4 = 5, в котором:
При этом саму запись (9 — 4) тоже можно назвать разностью.
Примеры использования свойств сложения и вычитания
Мы узнали основные свойства сложения и вычитания — осталось попрактиковаться. Чтобы ничего не забыть, используйте эту шпаргалку:
Пример 1
Вычислить сумму слагаемых с использованием разных свойств:
а) 4 + 3 + 8 = (4 + 3) + 8 = 7 + 8 = 15
б) 9 + 11 + 2 = (9 + 2) + 11 = 11 + 11 = 22
в) 30 + 0 + 13 = 30 + 13 = 43
Пример 2
Применить разные свойства при вычислении разности:
а) 25 — 0 — 2 = 25 — 2 = 23
б) 18 — (1 + 4) = 18 — 1 — 4 = 17 — 4 = 13
Пример 3
Найти значение выражения удобным способом:
а) 11 + 10 + 3 + 9 = (11 + 10) + (3 + 9) = 21 + 11 = 32
б) 16 — (4 + 3) + 7 = 16 — 4 — 3 + 7 = (16 — 4) — 3 + 7 = 12 — 3 + 7 = 9 + 7 = 16
Источник
Калькулятор суммы последовательных чисел
Все числа характеризуются свойствами делимости или факторизации, но кроме этого существуют числа, которые легко представить в виде суммы последовательных натуральных чисел.
Разложение чисел на составляющие
В теории чисел каждое натуральное число легко представить в виде составляющих. Разложение элементов натурального множества на простые множители позволяет выразить числа в виде произведения составляющих. Простые множители — это элементы целого ряда, которые делятся только на себя и на единицу, но их произведение формирует искомое число. Например, 50 легко разбить на неделимые и записать его в виде 2 × 5 × 5. Однако числа можно представлять не только в виде произведения, но и в форме суммы.
Совершенные числа
Наиболее известным примером выражения натуральных чисел в виде суммы являются совершенные и последовательные числа. Совершенные числа представляют собой математические объекты, которые записываются в виде суммы собственных делителей. Например, к таким объектам относятся 6 и 28:
- при разложении 6 на делители получаем 1, 2 и 3, что в сумме дает 6;
- разложив 28 на делители, мы получим 1, 2, 4, 7, 14, что при сложении дает 28.
По мере того, как натуральный ряд растет, совершенные числа встречаются все реже. Первые шесть членов совершенной последовательности выглядят так:
6, 28, 496, 8 128, 33 550 336, 8 589 869 056.
Очевидно, что совершенных чисел не так много, а математикам до сих пор неизвестно, существуют ли их предел или совершенная последовательность устремляется в бесконечность.
Последовательные числа
Последовательные числа записываются в виде суммы последовательных членов натурального ряда. Натуральный ряд — это положительные целые числа, которые мы используем при счете предметов. Последовательные члены ряда — это два рядом стоящих элемента, к примеру, 2 и 3, 17 и 18, 178 и 179.
Достаточно много натуральных чисел мы можем записывать в виде суммы последовательных элементов. Например, число 57 мы можем записать в трех вариантах:
- 7 + 8 + 9 + 10 + 11 + 12 = 57;
- 18 + 19 + 20 = 57;
- 28 + 29 = 57.
Точно также легко записать 58, 59, 60 и далее, а вот 64 последовательным числом не является и его невозможно представить в виде суммы последовательных членов натурального ряда.
Наш онлайн-калькулятор позволяет представить натуральные числа в виде суммы последовательных. Как видно, выразить число в виде суммы можно несколькими способами, поэтому наша программа высчитывает только один способ, который раскладывает число на сумму наибольшего количества слагаемых.
Примеры
Суммирование последовательных чисел
В работе с последовательными элементами натурального ряда существует несколько хитростей. Первая из таких уловок — это сложение пяти последовательных чисел быстрым способом, который состоит в умножении на 5 третьего члена последовательности. Например, если мы хотим быстро сложить 1 + 2 + 3 + 4 + 5, нам достаточно умножить 3 на 5 и получить 15. Давайте проверим и введем 15 в форму онлайн-калькулятора:
15 = 1 + 2 + 3 + 4 + 5.
Если мы возьмем следующую сумму из пяти последовательных чисел, например, 10 + 11 + 12 + 13 + 14, то умножив третий член на 5, мы получим 12 × 5 = 60. Проверим число 60 на возможность разложения в последовательный ряд:
- 60 = 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11;
- 60 = 10 + 11 + 12 + 13 + 14;
- 60 = 19 + 20 + 21.
Как видите, число 60 легко разложить на сумму тремя способами, среди которых есть и наш, который выражен в виде суммы пяти последовательных чисел.
Разложение чисел на сумму последовательных элементов
Для решения такой задачи от вас потребуется только ввести число в форму калькулятора. Давайте попробуем разложить на последовательные слагаемые большие числа:
- 256 — не последовательное число;
- 404 = 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54;
- 666 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36.
Таким образом, вы можете разложить достаточно большое количество членов натурального ряда, так как не последовательные числа встречаются довольно редко.
Заключение
Теория чисел — чистая математика, которую трудно использовать в повседневной жизни. Несмотря на это, вы можете использовать нашу программу для исследования самых разных свойств чисел.
Источник
Порядок действий в математике
О чем эта статья:
Основные операции в математике
Основные операции, которые используют в математике — это сложение, вычитание, умножение и деление. Помимо этих операций есть ещё операции отношения, такие как равно (=), больше (>), меньше ( )
меньше (
Порядок вычисления простых выражений
Есть однозначное правило, которое определяет порядок выполнения действий в выражениях без скобок:
- действия выполняются по порядку слева направо
- сначала выполняется умножение и деление, а затем — сложение и вычитание.
Из этого правила становится яснее, какое действие выполняется первым. Универсального ответа нет, нужно анализировать каждый пример и подбирать ход решения самостоятельно.
Что первое, умножение или деление? — По порядку слева направо.
Сначала умножение или сложение? — Умножаем, потом складываем.
Порядок выполнения действий в математике (слева направо) можно объяснить тем, что в нашей культуре принято вести записи слева направо. А необходимость сначала умножить или разделить объясняется самой сутью этих операций.
Рассмотрим порядок арифметических действий в примерах.
Пример 1. Выполнить вычисление: 11- 2 + 5.
В нашем выражении нет скобок, умножение и деление отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычтем два из одиннадцати, затем прибавим к остатку пять и в итоге получим четырнадцать.
Вот запись всего решения: 11- 2 + 5 = 9 + 5 = 14.
Пример 2. В каком порядке выполнить вычисления в выражении: 10 : 2 * 7 : 5?
Чтобы не ошибиться, перечитаем правило для выражений без скобок. У нас есть только умножение и деление — значит сохраняем записанный порядок вычислений и считаем последовательно слева направо.
Сначала выполняем деление десяти на два, результат умножаем на семь и получившееся в число делим на пять.
Запись всего решения выглядит так: 10 : 2 * 7 : 5 = 5 * 7 : 5 = 35 : 5 = 7.
Пока новые знания не стали привычными, чтобы не перепутать последовательность действий при вычислении значения выражения, удобно над знаками арифметический действий расставить цифры, которые соответствуют порядку их выполнения.
Например, в такой последовательности можно решить пример по действиям:
Действия первой и второй ступени
В некоторых учебниках по математике можно встретить разделение арифметических действий на действия первой и второй ступени.
- Действиями первой ступени называют сложение и вычитание, а умножение и деление — действиями второй ступени.
С этими терминами правило определения порядка выполнения действий звучит так:
Если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем — действия первой ступени (сложение и вычитание).
Порядок вычислений в выражениях со скобками
Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:
Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.
Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.
Рассмотрим порядок выполнения действий на примерах со скобками.
Пример 1. Вычислить: 10 + (8 — 2 * 3) * (12 — 4) : 2.
Как правильно решить пример:
Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.
Начнем с первого 8 — 2 * 3. Что сначала, умножение или вычитание? Мы уже знаем правильный ответ: умножение, затем вычитание. Получается так:
8 — 2 * 3 = 8 — 6 = 2.
Переходим ко второму выражению в скобках 12 — 4. Здесь только одно действие – вычитание, выполняем: 12 — 4 = 8.
Подставляем полученные значения в исходное выражение:
10 + (8 — 2 * 3) * (12 — 4) : 2 = 10 + 2 * 8 : 2.
Порядок действий: умножение, деление, и только потом — сложение. Получится:
10 + 2 * 8 : 2 = 10 + 16 : 2 = 10 + 8 = 18.
На этом все действия выполнены.
Ответ: 10 + (8 — 2 * 3) * (12 — 4) : 2 = 18.
Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.
Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).
Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:
Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:
5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.
Исходное значение, после подстановки примет вид 9 + 26, и остается лишь выполнить сложение: 9 + 26 = 35.
Ответ: 9 + (5 + 1 + 4 * (2 + 3)) = 35.
Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями
Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции — их значения нужно вычислить до выполнения остальных действий. При этом важно учитывать правила из предыдущих пунктов, которые задают очередность действий в математике.
Другими словами, перечисленные функции по степени важности можно приравнивать к выражению в скобках.
И, как всегда, рассмотрим, как это работает на примере.
Пример 1. Вычислить (4 + 1) * 3 + 62 : 3 — 7.
В этом выражении есть степень 62. И нам нужно найти ее значение до выполнения остальных действий. Выполним возведение в степень: 62 = 36.
Подставляем полученное значение в исходное выражение:
(4 + 1) * 3 + 36 : 3 — 7.
Дальше нам уже все знакомо: выполняем действия в скобках, далее по порядку слева направо выполняем сначала умножение, деление, а затем — сложение и вычитание. Ход решения выглядит так:
(4 + 1) * 3 + 36 : 3 — 7 = 3 * 3 + 36 : 3 — 7 = 9 + 12 — 7 = 14.
Ответ: (3 + 1) * 2 + 62 : 3 — 7 = 14.
У нас есть статья «знаки больше, меньше или равно», она может быть полезной для тебя!
Источник