Основы геодезии
О геодезии и разный полезный материал для геодезистов.
Аналитический способ
При наличии прямоугольных координат X и Y вершин n -угольника его площадь можно вычислить по формулам аналитической геометрии; выведем одну из таких формул.
Пусть в треугольнике ABC координаты вершин равны X1 , Y1 (A), X2, Y2 (B) и X3, Y3 (C) – рис.6.2.
Из вершин треугольника опустим перпендикуляры на оси координат и обозначим их длину, как показано на рис.6.2.
Площадь треугольника P будет равна сумме площадей двух трапеций I(aABc) и II(bBCc) за вычетом площади трапеции III(aACc)
Выразим площадь каждой трапеции через ее основания и высоту:
Чтобы избавиться от множителя 0.5, будем вычислять удвоенную площадь треугольника. Выполним умножение, приведем подобные члены, вынесем общие множители за скобки и получим:
или в общем виде:
В этой формуле индекс “i” показывает номер вершины треугольника; индекс “i” означает, что нужно брать следующую или предыдущую вершину (при обходе фигуры по часовой стрелке).
Если при группировке членов выносить за скобки Y1, то получится формула:
Вычисления по обоим формулам дают одинаковый результат, поэтому на практике можно пользоваться любой из них.
Хотя формулы (6.11) и (6.12) выведены для треугольника, нетрудно показать, что они пригодны для вычисления площади любого n – угольника.
Оценка точности площади. В большинстве случаев участки на местности имеют форму неправильного n – угольника, причем количество вершин многоугольника n может быть от 30 до 20 и более. Площадь таких участков вычисляют аналитическим способом по прямоугольным координатам вершин, которые, в свою очередь, определяют в результате обработки геодезических измерений. При этом для каждой вершины многоугольника получают координаты и ошибку ее положения относительно исходных пунктов, задающих систему координат на местности.
Выведем формулу для оценки площади многоугольника по известным внутренним углам, длинам его сторон и ошибкам положения mti его вершин.
На рис.6.3 изображен фрагмент многоугольника с вершинами i-1, i, i+1, i+2 и сторонами li-1,li,li+1.
Проведем на вершинах i и i+1 окружности радиусами mti и mt(i+1) и построим биссектрисы углов βi и βi+1. Затем восстановим перпендикуляры к стороне li и найдем проекции отрезков mti и mt(i+1) на эти перпендикуляры:
Построим трапецию, основаниями которой являются отрезки mi и mi+1, а высотой – сторона li и найдем площадь этой трапеции ΔPi. Как известно, площадь трапеции равна произведению полусуммы оснований на высоту, а поскольку основаниями трапеции являются проекции ср.кв. ошибок, то вместо полусуммы нужно взять квадратичную полусумму оснований; таким образом,
Площадь трапеции, построенной на одной стороне многоугольника, является частью ошибки площади всего многоугольника; выполнив квадратичное суммирование площадей ΔPi по всем сторонам, получим:
Из формулы (6.16) можно получить формулу средней квадратической ошибки площади правильного многоугольника с одинаковой ошибкой положения mt всех его вершин:
mP=an * mt * L, (6.17)
где: L – периметр многоугольника,
an – коэффициент, зависящий от n – количества вершин;
его значения:
n 3 4 5 6 7 8 9 10
an 0.204 0.250 0.256 0.250 0.243 0.231 0.222 0.212
n 11 12 15 20 24 30 60 120
an 0.205 0.197 0.179 0.156 0.143 0.128 0.091 0.065
Формула (6.17) является базовой и при оценке площади неправильных n-угольников, для которых ошибка площади mp оказывается лишь на несколько процентов больше, чем для правильного n – угольника. Так, если площадь неправильного n – угольника при том же периметре в два раза меньше площади правильного n-угольника, то ошибка его площади увеличивается лишь на 20 %.
При неодинаковых ошибках положения вершин многоугольника в формуле (6.17) достаточно вместо mt поставить mt(ср).
Примером применения формулы (6.17) является оценка площади участков, координаты вершин которых получены с топографических планов. Например, для плана масштаба 1:2000 ошибку положения точек можно принять равной mt = 0.50 мм * M = 1 м (при условии, что основа плана достаточно жесткая и ее деформацией можно пренебречь). При площади участка 0.12 га и количестве вершин n=4 (5 или 6) средняя квадратическая ошибка его площади при правильной форме (периметр L = 140 м) будет равна 35 кв.м, а при неправильной форме (периметр L>140 м) она может достигать 40 кв.м.
Другим примером применения формулы (6.17) может служить оценка площади многоугольника, координаты вершин которого получены из полярной засечки, выполненной с одного пункта-станции.
При использовании точных приборов (электронных тахеометров или систем GPS) доля ошибок измерений в ошибке положения точек значительно меньше доли ошибки их фиксации mф на местности. Приняв mti= mф, можно использовать формулу (6.17) для любых способов получения координат вершин многоугольника.
Площадь правильного n-угольника можно выразить через его периметр:
И из формулы (6.17) получить формулу относительной ошибки площади:
для треугольника (n=3) mp/P = 4.24* mt/L,
для четырехугольника (n=4) mp/P = 4.00* mt/L,
для пятиугольника (n=5) mp/P = 3.72 mt/L,
для шестиугольника (n=6) mp/P = 3.46 mt/L.
Таким образом, для приближенной оценки площади 3-4-5-6- угольника в аналитическом способе можно применять формулу:
ошибка этой формулы может достигать 15% – 20% для участков, форма которых заметно отличается от формы правильного n -угольника.
Источник
Вычисление площади земельного участка аналитическим способом по координатам
ФЕДЕРАЛЬНАЯ СЛУЖБА ГОСУДАРСТВЕННОЙ РЕГИСТРАЦИИ, КАДАСТРА И КАРТОГРАФИИ
от 23 октября 2020 года N П/0393
требования к точности и методам определения координат характерных точек границ земельного участка, требования к точности и методам определения координат характерных точек контура здания, сооружения или объекта незавершенного строительства на земельном участке (приложение N 1 к настоящему приказу);
требования к определению площади здания, сооружения, помещения, машино-места (приложение N 2 к настоящему приказу).
2. Настоящий приказ вступает в силу с 1 января 2021 года и действует до 31 декабря 2026 года.
Исполняющий обязанности руководителя
М.С.Смирнов
в Министерстве юстиции
16 ноября 2020 года,
регистрационный N 60938
Приложение N 1
к приказу Росреестра
от 23 октября 2020 года N П/0393
Требования к точности и методам определения координат характерных точек границ земельного участка, требования к точности и методам определения координат характерных точек контура здания, сооружения или объекта незавершенного строительства на земельном участке
1. Характерной точкой границы земельного участка является точка изменения описания границы земельного участка и деления ее на части .
2. Положение на местности характерных точек границы земельного участка и характерных точек контура здания, сооружения или объекта незавершенного строительства на земельном участке (далее — характерные точки) описывается плоскими прямоугольными координатами, вычисленными в системе координат, установленной для ведения Единого государственного реестра недвижимости.
3. Координаты характерных точек определяются следующими методами:
1) геодезический метод (полигонометрия, прямые, обратные или комбинированные засечки и иные геодезические методы);
2) метод спутниковых геодезических измерений (определений);
3) комбинированный метод (сочетание геодезического метода и метода спутниковых геодезических измерений (определений);
4) фотограмметрический метод;
5) картометрический метод;
6) аналитический метод.
При выполнении измерений в государственных системах координат для определения значения координат характерных точек в местных системах координат используются параметры перехода между соответствующей местной системой координат и государственными системами координат, определенные в соответствии с законодательством о геодезии и картографии.
4. Для определения координат характерных точек геодезическим методом, методом спутниковых геодезических измерений (определений) и комбинированным методом используются пункты государственной геодезической сети и (или) геодезических сетей специального назначения (далее — геодезические пункты).
Характерные точки границ земельных участков, определенные геодезическим методом, методом спутниковых геодезических измерений (определений) или комбинированным методом, закрепляются межевыми или иными знаками, в случае если это предусмотрено договором подряда на выполнение кадастровых работ или иным документом, на основании которого выполняются кадастровые работы. Сведения о закреплении характерных точек границ земельных участков отражаются в межевом плане.
Для оценки точности определения координат (местоположения) характерной точки рассчитывается средняя квадратическая погрешность.
5. Средняя квадратическая погрешность определения координат характерной точки вычисляется по формуле:
,
— средняя квадратическая погрешность определения координат характерной точки относительно ближайшего пункта государственной геодезической сети или геодезической сети специального назначения;
— средняя квадратическая погрешность определения координат точки съемочного обоснования относительно ближайшего пункта государственной геодезической сети или геодезической сети специального назначения;
— средняя квадратическая погрешность определения координат характерной точки относительно точки съемочного обоснования, с которой производилось ее определение.
6. Фактическая величина средней квадратической погрешности определения координат характерной точки границы земельного участка не должна превышать значения точности (средней квадратической погрешности) определения координат характерных точек границ земельных участков из установленных в приложении к настоящим требованиям.
7. Координаты характерных точек контура конструктивных элементов здания, сооружения или объекта незавершенного строительства, расположенных на поверхности земельного участка, надземных конструктивных элементов, а также подземных конструктивных элементов (при условии возможности визуального осмотра таких подземных конструктивных элементов на момент проведения кадастровых работ, например, до засыпки траншеи) определяются с точностью определения координат характерных точек границ земельного участка, на котором расположены здание, сооружение или объект незавершенного строительства.
Если здание, сооружение или объект незавершенного строительства располагаются на нескольких земельных участках, для которых установлена различная точность определения координат характерных точек, то координаты характерных точек контура конструктивных элементов здания, сооружения или объекта незавершенного строительства, расположенных на поверхности земельного участка, надземных конструктивных элементов, а также подземных конструктивных элементов (при условии возможности визуального осмотра таких подземных конструктивных элементов) определяются с точностью, соответствующей наиболее высокой точности определения координат характерных точек границ земельного участка.
8. При отсутствии на момент проведения кадастровых работ возможности визуального осмотра подземных конструктивных элементов здания, сооружения или объекта незавершенного строительства средняя квадратическая погрешность определения координат характерной точки контура подземного конструктивного элемента здания, сооружения или объекта незавершенного строительства определяется по следующим формулам:
а) при вычислении координат характерных точек контура подземного конструктивного элемента здания, сооружения или объекта незавершенного строительства на основании полученных значений координат характерных точек контура наземных конструктивных элементов, результатов внутреннего обмера и толщины ограждающих конструкций (стен) конструктивных элементов:
,
— средняя квадратическая погрешность определения координат характерной точки контура подземного конструктивного элемента;
— средняя квадратическая погрешность определения координат характерной точки контура наземного конструктивного элемента;
— средняя квадратическая погрешность линейных (линейно-угловых) измерений параметров подземных конструктивных элементов;
— средняя квадратическая погрешность передачи координат с наземного на подземный конструктивный элемент здания;
б) при вычислении координат характерных точек контура подземных конструктивных элементов, местоположение которых определено с использованием приборов поиска (например, трассоискателей, георадаров, трубокабелеискателей, тепловизоров):
,
— средняя квадратическая погрешность определения координат характерной точки контура подземного конструктивного элемента;
— средняя квадратическая погрешность определения координат характерной точки проекции подземного конструктивного элемента на поверхность земельного участка;
— средняя квадратическая погрешность определения местоположения подземных конструктивных элементов прибором поиска.
При этом величина средней квадратической погрешности определения координат характерной точки контура подземного конструктивного элемента не ограничивается значениями точности определения координат характерных точек границ земельных участков, указанных в приложении к настоящим требованиям, допускается отклонение средней квадратической погрешности определения координат характерной точки контура подземного конструктивного элемента от значений средних квадратических погрешностей для соответствующих категорий земель и разрешенного использования земельных участков.
9. Для вычисления средней квадратической погрешности определения координат характерной точки используются формулы, соответствующие методам определения координат характерных точек.
10. Геодезический метод.
Вычисление средней квадратической погрешности определения координат характерных точек производится с использованием программного обеспечения, посредством которого осуществляется обработка полевых материалов, в соответствии с применяемыми способами (теодолитные или полигонометрические ходы, прямые, обратные или комбинированные засечки и иные).
При обработке полевых материалов без применения программного обеспечения при вычислении средней квадратической погрешности определения координат характерных точек используется формула, указанная в пункте 5 настоящих требований, а также формулы расчета средней квадратической погрешности, соответствующие способам определения координат характерных точек, в том числе:
1) среднюю квадратическую погрешность определения координат характерной точки методом прямой угловой засечки вычисляют по формуле:
,
— средняя квадратическая погрешность измерения угла, выраженная в секундах;
= 206265″ — число секунд в одном радиане;
— угол между направлениями на исходные геодезические пункты (1) и (2);
и
— расстояния от исходных геодезических пунктов (1) и (2) до определяемой точки;
2) среднюю квадратическую погрешность определения координат характерной точки методом обратной угловой засечки вычисляют по формуле:
,
— средняя квадратическая погрешность измерения угла, выраженная в секундах;
Источник