Выборочные исследования как способ получения статистических данных

8.1. Понятие выборочного метода. Ошибка выборки

Статистическое исследование может осуществляться по данным несплошного наблюдения. Основная цель несплошного наблюдения – получение характеристик изучаемой совокупности по обследованной её части. Один из наиболее распространённых в статистике методов, применяющий несплошное наблюдение – выборочный метод.

· Под ВЫБОРОЧНЫМ понимается метод статистического исследования, при котором обобщающие показатели изучаемой совокупности устанавливаются по некоторой её части (обычно 5 – 10 %, реже 15 – 25 % изучаемой совокупности)на основе случайного отбора.

· Подлежащая изучению статистическая совокупность, из которой часть единиц отбирается для обследования, называется ГЕНЕРАЛЬНОЙ СОВОКУПНОСТЬЮ.

· Некоторая часть единиц, отобранная из генеральной совокупности и подвергающаяся обследованию, называется ВЫБОРОЧНОЙ СОВОКУПНОСТЬЮ (ВЫБОРКОЙ).

Значение выборочного метода состоит в следующем:

1) при минимальной численности обследуемых единиц исследование проводится в более короткие сроки и с минимальными затратами труда и денежных средств. Это повышает оперативность статистической информации, уменьшает ошибки регистрации;

2) при проведении ряда исследований выборочный метод является единственно возможным;

3) применяется для проверки данных сплошного учёта.

Выборочный метод имеет важную особенность по сравнению с другими методами несплошного наблюдения: в основу отбора единиц для обследования положен принцип равных возможностей попадания в выборку каждой единицы генеральной совокупности. В результате соблюдения этого принципа исключается возможность образования выборки только за счёт лучших или худших образцов. Это предупреждает возникновение систематических ошибок.

· Поскольку любая статистическая совокупность состоит из единиц с варьирующими признаками, то состав выборочной совокупности может в той или иной мере отличаться от состава генеральной совокупности. Это объективно возникающее расхождение между характеристиками выборки и генеральной совокупности составляет ОШИБКУ ВЫБОРКИ.

Величина ошибки выборки зависит от ряда факторов:

1) степени вариации изучаемого признака;

2) численности выборки;

3) методов отбора единиц в выборочную совокупность;

4) принятого уровня достоверности результата исследования.

ОБЩАЯ ВЕЛИЧИНА ВОЗМОЖНОЙ ОШИБКИ ВЫБОРКИ слагается из ошибок двух видов: ошибки регистрации и ошибки репрезентативности. Первый вид ошибок при выборочном наблюдении практически исключён. Второй вид ошибок присущ только несплошному наблюдению.

Ошибки репрезентативности бывают систематические и случайные.

· СИСТЕМАТИЧЕСКИЕ ОШИБКИ могут возникать в связи с особенностями принятой системы отбора и обработки данных наблюдения, или в связи с нарушениями установленных правил отбора единиц для обследования.

· Возникновение СЛУЧАЙНЫХ ОШИБОК РЕПРЕЗЕНТАТИВНОСТИ объясняется неравномерным распределением единиц в генеральной совокупности. Поэтому распределение отобранной для обследования совокупности единиц (выборки) не вполне точно воспроизводит распределение единиц генеральной совокупности.

Величина ошибки выборки характеризует степень надёжности результатов обследования выборочной совокупности и необходима для оценки параметров генеральной совокупности. Для каждого конкретного выборочного наблюдения величина ошибки выборки может быть определена по соответствующим формулам.

8.2. Основные способы формирования выборочной совокупности

Способ отбора определяет конкретный механизм или процедуру выборки единиц из генеральной совокупности и зависит от степени вариации изучаемого признака в исследуемой совокупности.

В практике выборочных обследований наибольшее распространение получили следующие СПОСОБЫ ФОРМИРОВАНИЯ ВЫБОРКИ.

· СОБСТВЕННО-СЛУЧАЙНАЯ ВЫБОРКА заключается в отборе единиц из генеральной совокупности наугад или наудачу без каких-либо элементов системности. Применяется в случае незначительной вариации изучаемого признака в пределах исследуемой совокупности.

При проведении отбора этим способом следует принять во внимание, что все единицы генеральной совокупности имеют равные шансы попадания в выборку. Следует также установить чёткие границы генеральной совокупности таким образом, чтобы включение или невключение в неё отдельных единиц не вызывало сомнений.

Читайте также:  Китайский способ борьбы с коронавирусом

Например, при обследовании студентов, необходимо чётко определиться, будут ли приниматься во внимание лица, находящиеся в академическом отпуске, студенты негосударственных вузов и т. п.

Технически собственно-случайный отбор проводится путём жеребьёвки или с помощью таблиц случайных чисел.

Собственно-случайный отбор может быть как повторным, так и бесповторным (выпавшие жребии обратно в исходную совокупность не возвращаются и в дальнейшем отборе не участвуют).

МЕХАНИЧЕСКАЯ ВЫБОРКА применяется в случаях, когда генеральная совокупность каким-либо образом упорядочена, т. е. имеется определённая последовательность в расположении единиц (например, телефонные номера респондентов, списки избирателей, номера домов, квартир).

Для проведения механической выборки устанавливается пропорция отбора, которая устанавливается соотнесением объёмов выборочной и генеральной совокупности. Например, при пропорции 1:50 (2%-ная выборка) отбирается каждая 50 – я единица; при пропорции 1:20 (5%-ная выборка) – каждая 20 единица и т.д.

ТИПИЧЕСКИЙ ОТБОР используется в тех случаях, когда все единицы генеральной совокупности можно разбить на типические группы; вариация исследуемого признака от группы к группе – значительная.

При обследованиях населения такими группами могу быть, например, районы, социальные, возрастные или образовательные группы; при обследовании предприятий – отрасль и подотрасль, форма собственности и т. д.

Типический отбор предполагает выборку из единиц из каждой типической группы собственно-случайным или механическим способом.

Отбор единиц в типическую выборку может быть организован либо пропорционально объёму типических групп, либо пропорционально внутригрупповой дифференциации признака. При выборке, пропорциональной объёму типических групп, число единиц, подлежащих отбору из каждой группы, определяется следующим образом: ni = n * Ni/N, где ni – объём выборки из i-й группы; Ni – объём i-й группы. n – численность выборочной совокупности.

Отбор, пропорциональный внутригрупповой дифференциации признака, осуществляется на основе использования внутригрупповых дисперсий по каждой типической группе.

СЕРИЙНЫЙ ОТБОР удобен в тех случаях, когда единицы совокупности объединены в небольшие группы или серии.

В качестве таких серий могут рассматриваться упаковки с определённым количеством готовой продукции, партии товара, студенческие группы, бригады и другие объединения.

Сущность серийной выборки заключается в собственно-случайном, либо механическом отборе серий, внутри которых производится сплошное обследование единиц.

КОМБИНИРОВАННЫЙ ОТБОР предполагает применение различных способов формирования выборки в комбинации.

Например, можно комбинировать типическую выборку и серийную: серии отбираются в установленном порядке из нескольких типических групп.

Возможна также комбинация серийного и собственно-случайного отбора: отдельные единицы отбираются внутри серии в собственно-случайном порядке.

8.3. Средняя и предельная ошибки выборки

После проведения отбора для определения возможных границ генеральных характеристик рассчитываются средняя и предельная ошибки выборки.

СРЕДНЯЯ ОШИБКА ВЫБОРКИ показывает величину возможных отклонений характеристик выборочной совокупности от соответствующих характеристик генеральной совокупности.

Ошибки выборки могут быть рассчитаны для среднего значения признака и для доли альтернативного признака (табл.). В математической статистике доказывается, что генеральная средняя будет отличаться от выборочной средней на величину средней ошибки выборки (±m) только в 68,3% случаев. В 95% случаев ошибка выборки не выйдет за пределы ±2m. В 99,7% случаев разность между генеральной и выборочной средней на превзойдёт трёхкратной средней ошибки выборки (±3m) и т.д.

Читайте также:  Способы государства при сборе налогов

Формула для определения средней ошибки выборки

Источник

Выборочные исследования как способ получения статистических данных

1. Задачи математической статистики.

3. Способы отбора.

4. Статистическое распределение выборки.

5. Эмпирическая функция распределения.

6. Полигон и гистограмма.

7. Числовые характеристики вариационного ряда.

8. Статистические оценки параметров распределения.

9. Интервальные оценки параметров распределения.

1. Задачи и методы математической статистики

Математическая статистика — это раздел математики, посвященный методам сбора, анализа и обработки результатов статистических данных наблюдений для научных и практических целей.

Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным- контролируемый размер детали.

Иногда проводят сплошное исследование, т.е. обследуют каждый объект относительно нужного признака. На практике сплошное обследование применяется редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование не имеет смысла. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов (выборочную совокупность) и подвергают их изучению.

Основная задача математической статистики заключается в исследовании всей совокупности по выборочным данным в зависимости от поставленной цели, т.е. изучение вероятностных свойств совокупности: закона распределения, числовых характеристик и т.д. для принятия управленческих решений в условиях неопределенности.

Генеральная совокупность – это совокупность объектов, из которой производится выборка.

Выборочная совокупность (выборка) – это совокупность случайно отобранных объектов.

Объем совокупности – это число объектов этой совокупности. Объем генеральной совокупности обозначается N , выборочной – n .

Если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n = 100.

При составлении выборки можно поступить двумя способами: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки делятся на повторные и бесповторные.

Повторной называют выборку, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку, при которой отобранный объект в генеральную совокупность не возвращается.

На практике обычно пользуются бесповторным случайным отбором.

Для того, чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Выборка должна правильно представлять пропорции генеральной совокупности. Выборка должна быть репрезентативной (представительной).

В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществлять случайно.

Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.

В американском журнале «Литературное обозрение» с помощью статистических методов было проведено исследование прогнозов относительно исхода предстоящих выборов президента США в 1936 году. Претендентами на этот пост были Ф.Д. Рузвельт и А. М. Ландон. В качестве источника для генеральной совокупности исследуемых американцев были взяты справочники телефонных абонентов. Из них случайным образом были выбраны 4 миллиона адресов., по которым редакция журнала разослала открытки с просьбой высказать свое отношение к кандидатам на пост президента. Обработав результаты опроса, журнал опубликовал социологический прогноз о том, что на предстоящих выборах с большим перевесом победит Ландон. И … ошибся: победу одержал Рузвельт.
Этот пример можно рассматривать, как пример нерепрезентативной выборки. Дело в том, что в США в первой половине двадцатого века телефоны имела лишь зажиточная часть населения, которые поддерживали взгляды Ландона.

Читайте также:  Способы мониторинг рынка труда

На практике применяются различные способы отбора, которые можно разделить на 2 вида:

1. Отбор не требует расчленения генеральной совокупности на части (а) простой случайный бесповторный; б) простой случайный повторный).

2. Отбор, при котором генеральная совокупность разбивается на части. (а) типичный отбор; б) механический отбор; в) серийный отбор).

Простым случайным называют такой отбор, при котором объекты извлекаются по одному из всей генеральной совокупности (случайно).

Типичным называют отбор, при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типичной» части. Например, если деталь изготавливают на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукции каждого станка в отдельности. Таким отбором пользуются тогда, когда обследуемый признак заметно колеблется в различных «типичных» частях генеральной совокупности.

Механическим называют отбор, при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект. Например, если нужно отобрать 20 % изготовленных станком деталей, то отбирают каждую 5-ую деталь; если требуется отобрать 5 % деталей- каждую 20-ую и т.д. Иногда такой отбор может не обеспечивать репрезентативность выборки (если отбирают каждый 20-ый обтачиваемый валик, причем сразу же после отбора производится замена резца, то отобранными окажутся все валики, обточенные затупленными резцами).

Серийным называют отбор, при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергают сплошному обследованию. Например, если изделия изготавливаются большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков.

На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы.

4. Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка, причем значение x1 –наблюдалось раз, x2-n2 раз,… xk — nk раз. n = n1+n2+. +nk– объем выборки. Наблюдаемые значения называются вариантами, а последовательность вариант, записанных в возрастающем порядке- вариационным рядом. Числа наблюдений называются частотами (абсолютными частотами), а их отношения к объему выборки — относительными частотами или статистическими вероятностями.

Если количество вариант велико или выборка производится из непрерывной генеральной совокупности, то вариационный ряд составляется не по отдельным точечным значениям, а по интервалам значений генеральной совокупности. Такой вариационный ряд называется интервальным. Длины интервалов при этом должны быть равны.

Статистическим распределением выборки называется перечень вариант и соответствующих им частот или относительных частот.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (суммы частот, попавших в этот интервал значений)

Точечный вариационный ряд частот может быть представлен таблицей:

Источник

Оцените статью
Разные способы