Выборочное наблюдение способы формирования выборки

Раздел 1. Теория статистики

Цель: сформировать представление о способах решения задач, которые возникают при использовании выборочного наблюдения.

Задачи: познакомить студентов с методикой различных видов статистического наблюдения, оценки надежности выборочных показателей с учетом их случайной ошибки

Оглавление

4.1. Особенности выборочного наблюдения. Генеральная и выборочная совокупности

Выборочное наблюдение – это вид несплошного наблюдения, которое обеспечивает отбор в случайном порядке части единиц совокупности и возможность последующего распространения полученных данных на всю совокупность единиц.

Исходный массив данных называется генеральной совокупностью. Часть единиц генеральной совокупности, которая непосредственно обследуется при выборочном наблюдении, представляет собой выборочную совокупность. Числовые характеристики генеральной совокупности (средняя, дисперсия и др.) называются параметрами генеральной совокупности.

Организационными вопросами выборочного наблюдения являются: обоснование границ генеральной совокупности; единица отбора; единица наблюдения; способы отбора.

4.2. Виды и способы отбора. Виды выборочного наблюдения

По способу организации различают следующие основные виды выборочного наблюдения: собственно-случайная (простая) выборка; типическая (расслоенная, стратифицированная, районированная); серийная (гнездовая); многоступенчатая; многофазная.

При любом виде выборки отбор единиц производится тремя способами: случайный отбор (жеребьевка, таблица случайных чисел); отбор единиц по какой-либо схеме (единицы упорядочивают таким образом, чтобы это было не связано с изучаемыми свойствами; далее проводится механический отбор единиц); сочетание первого и второго способов.

Простая собственно-случайная выборка проводится из всей массы единиц совокупности без предварительного разделения ее на какие-либо группы. Применяется индивидуальный отбор единиц, т. е. единица отбора совпадает с единицей наблюдения. Типическая, (районированная, стратифицированная) выборка используется в случае, когда генеральная совокупность неоднородна и это влияет на размер изучаемого признака. Серийная выборка (кластерный или гнездовой отбор) – это способ формирования выборки, при котором единица отбора состоит из группы или гнезда более мелких единиц, называемых элементами. Многоступенчатая выборка применяется, когда имеют место несколько стадий отбора (ступеней отбора). При этом каждая стадия имеет свою единицу отбора. Число ступеней отбора определяется числом типов единиц отбора и на последней ступени единица отбора совпадает с единицей выборочной совокупности. Многофазная выборка характеризуется тем, что она также включает несколько ступеней отбора, но на всех ступенях сохраняется одна и та же единица отбора (в отличие от многоступенчатой).

Особым видом выборочного наблюдения является моментное наблюдение – это выборочное во времени наблюдение. Объектом выборки являются отрезки времени. Поэтому понятие генеральной и выборочной совокупности относится не к совокупности единиц, а ко времени наблюдения.

4.3. Определение ошибки выборочного наблюдения. Средняя и предельная ошибки выборочного наблюдения

Расхождение между значениями показателей, полученных по выборке, и соответствующими параметрами генеральной совокупности называется ошибкой репрезентативности. Различают систематические и случайные ошибки выборки. Случайные ошибки выборки объясняются недостаточно равномерным представлением в выборочной совокупности различных категорий единиц генеральной совокупности. Систематические ошибки могут быть связаны с нарушением правил отбора или условий реализации выборки.

Читайте также:  Способы защиты при экономическом споре

Величина случайной ошибки репрезентативности зависит от ряда факторов: объема выборки; степени вариации изучаемого признака в генеральной совокупности; принятого способа формирования выборочной совокупности.

Различают среднюю (стандартную) и предельную ошибку выборки. Средняя ошибка выборки характеризует меру отклонений выборочных показателей от аналогичных показателей генеральной совокупности. Предельной ошибкой выборки принято считать максимально возможное расхождение выборочной и генеральной характеристик, т. е. максимум ошибки при заданной вероятности ее появления. Соотношение между пределом ошибки выборки , гарантируемым с некоторой вероятностью Р(t), и средней ошибкой выборки имеет вид: или , где t – коэффициент доверия, определяемый в зависимости от уровня вероятности Р(t). Наряду с абсолютной величиной предельной ошибки выборки рассчитывается и относительная ошибка выборки, которая определяется как процентное отношение предельной ошибки выборки к соответствующей характе ристике выборочной совокупности. На практике величина дисперсии признака в генеральной совокупности, как правило, неизвестна, поэтому в формулы ошибки выборки подставляют дисперсию выборочной совокупности.

Выборочная дисперсия несколько меньше генеральной, в математической статистике доказано, что

Если выборочная совокупность большого объема (то есть n достаточно велико), то соотношение приближается к единице и выборочная дисперсия практически совпадает с генеральной.

Выборку считают безусловно большой, если n>100.

Источник

Выборочное наблюдение способы формирования выборки

1.1.2. ВЫБОРОЧНЫЙ МЕТОД НАБЛЮДЕНИЯ.
СПОСОБЫ ФОРМИРОВАНИЯ ВЫБОРОЧНОЙ СОВОКУПНОСТИ

Применение выборочного метода наблюдения включает следующие этапы:

определение генеральной совокупности и единиц наблюдения, обладающих первичной информацией, необходимой для решения задач обследования;

создание основы выборки;

формирование выборочной совокупности путем отбора элементов основы;

распространение собранных по выборке данных на генеральную совокупность.

Последний этап зависит от примененного способа отбора элементов в выборку и используемой формулы оценивания характеристик генеральной совокупности по данным выборки.

В статистической практике выборки извлекаются из конечных списочных основ. Однако единица основы, единица отбора и единица наблюдения могут отличаться. Например, это обычная ситуация при обследованиях населения и сельскохозяйственного сектора.

При рассмотрении любой схемы извлечения выборки должны быть учтены два фактора:

а) использовалась или нет вероятностная процедура;

б) наличие или отсутствие объективности в действиях специалиста, формирующего выборку.

Смысл объективности ясен и однозначен: любой специалист, производящий отбор, получил бы ту же самую выборку, т.е. выборку с теми же самыми свойствами. Субъективность означает, что специалисту, производящему отбор, позволено опираться на собственное суждение или интуицию относительно того, что является «хорошей» выборкой.

Рассматривая каждый из этих факторов на двух уровнях, можно выделить четыре типа выборок:

Роль, которую
играет специалист, осуществляющий отбор

Процедура отбора

Вероятностная

Невероятностная

Объективная

Выборки, сформированные вероятностным (случайным) образом

Выборки, сформированные на основе направленного отбора

Субъективная

Выборки, сформированные квазислучайным образом

Выборки, сформированные на основе суждения эксперта

В статистической практике используются все четыре типа выборок. Однако обычно отдают предпочтение вероятностным (случайным) выборкам как наиболее объективным, поскольку имеется хорошо обоснованная теория, позволяющая понимать поведение таких выборок и оценивать их свойства (качество) отображения характеристик всей совокупности. Свойства и объективная ценность других выборок известны в меньшей мере.

Читайте также:  Зарядное вымпел 30 способы заряда

Имеются два типа выборок, основывающихся на вероятностном способе отбора: выборки, отбираемые по объективным правилам вероятностного (случайного) отбора, и выборки, отбираемые, строго говоря, не по этим правилам (квазислучайные). Материалы сборника содержат значительное число примеров использования в статистической практике объективных вероятностных выборок. Одно из наиболее ценных качеств вероятностных выборок состоит в том, что можно оценить точность получаемых результатов по данным самой выборки.

В теории выборочных обследований рассматриваются выборки, извлеченные из совокупностей (основ выборки), содержащих некоторое конечное число единиц N . Эти единицы различимы между собой и число различных выборок объема n , которые могут быть извлечены из списка N единиц, равно числу сочетаний .

В выборочных статистических обследованиях в целях расчета параметров совокупности основное внимание направлено на изучение определенных свойств единиц, которые измеряются и фиксируются в процессе наблюдения для каждой единицы, включенной в выборку. Эти свойства называют признаками.

Хотя выборка используется для многих целей, обычно представляют интерес четыре характеристики совокупности:

среднее значение признака (например, среднее число занятых на одном предприятии);

суммарное значение признака (например, выпуск продукции предприятиями промышленности);

отношение двух суммарных или средних значений (например, отношение стоимости ликвидных активов к общей стоимости активов);

доля единиц в совокупности, относящихся к некоторой определенной группе (например, доля промышленных предприятий, оказывающих платные услуги населению) или обладающих определенным значением признака.

Главным вопросом методологии выборочного наблюдения является обеспечение приемлемого уровня ошибок получаемых значений характеристик совокупности, в том числе по требуемым разрезам, например, отраслям экономики, формам собственности и регионам России.

Полученные в результате выборочного наблюдения характеристики практически всегда несколько отличаются от характеристик генеральной совокупности. Эти отличия называются ошибками выборки (или репрезентативности) , которые могут быть систематическими или случайными.

Систематические ошибки имеют место в том случае, когда нарушен принцип случайности отбора и в выборку попали единицы, обладающие какими-либо свойствами, не характерными для всех единиц генеральной совокупности. Случайные ошибки обусловлены тем обстоятельством, что даже при тщательной организации выборка не может в точности воспроизвести генеральную совокупность. В отличие от ошибок систематических, случайные ошибки являются вполне допустимыми, если они малы и могут быть оценены статистически.

Для измерения ошибки выборки, а также сравнения двух оценок, т.е. выявления более эффективной оценки, используют средний квадрат ошибки оценки (СКО), который измеряет ошибку относительно оцениваемого параметра совокупности:

символ, заменяющий выражение «математическое ожидание величины»;

оценка некоторой характеристики совокупности , получаемая согласно некоторой схеме отбора и примененной формуле оценивания;

математическое ожидание — среднее значение, взятое по всем возможным выборкам;

смещение оценки;

дисперсия оценки.

Таким образом, СКО является критерием достоверности оценки, который характеризует величину отклонений от истинного значения характеристики совокупности .

Поскольку на практике трудно проследить, чтобы оценки не давали никаких смещений, для характеристики оценки используется понятие «точности», относящееся к величине отклонений от усредненного значения .

Читайте также:  Способы по возвращению парня

Степень точности оценки обычно характеризуется ее дисперсией, стандартной ошибкой, коэффициентом вариации (относительной стандартной ошибкой) и доверительным интервалом.

Точность какой-либо оценки, полученной по выборке, зависит от двух факторов: от способа, которым оценка вычисляется по данным выборки, и от способа формирования самой выборки.

В выборочных обследованиях способ оценивания называется состоятельным, если оценка становится в точности равной оцениваемому параметру для совокупности при n = N , т.е. когда выборку составляет вся совокупность. Очевидно, что при простом случайном отборе выборочное среднее и произведение представляют собой состоятельные оценки соответственно среднего и суммарного значений для совокупности.

В данном контексте способ оценивания называется несмещенным , если среднее значение оценки, взятое по всем возможным выборкам данного объема n , в точности равно истинному значению для совокупности, и это утверждение справедливо для любой конечной совокупности значений и для любого n . Например, при простом случайном отборе выборочное среднее — несмещенная оценка среднего значения признака, — несмещенная оценка суммарного значения Y для совокупности, где — среднее значение признака по выборке.

В теории и практике выборочных обследований часто приходится рассматривать смещенные оценки. Это обусловлено следующими причинами. Во-первых, в некоторых случаях, особенно при оценивании отношений двух величин, смещенные оценки дают более достоверные результаты, чем несмещенные. Во-вторых, даже в случае использования теоретически несмещенных оценок ошибки наблюдения и неполучение ответов от респондентов могут привести к смещениям в распространенных результатах.

Кратко опишем некоторые, наиболее часто используемые в статистической практике способы формирования вероятностной выборки.

Простой случайный отбор. Простым случайным отбором называется способ, при котором извлечение единиц из совокупности для обследования осуществляется методом жеребьевки или с использованием таблиц или генератора случайных чисел без деления этой совокупности на какие-либо классы или группы.

Простую случайную выборку получают, отбирая последовательно единицу за единицей. Единицы в совокупности нумеруются числами от 1 до N , после чего выбирается последовательность n случайных чисел, заключенных между 1 и N . Единицы совокупности, имеющие эти номера, составляют выборку. На каждом этапе отбора такой процесс обеспечивает для всех еще не выбранных номеров равную вероятность быть отобранными. Легко показать, что равную вероятность быть отобранными имеют все возможных выборок.

Уже отобранные номера исключаются из списка, иначе одна и та же единица могла бы попасть в выборку более одного раза. Поэтому такой отбор называется отбором без возвращения . Отбор с возвращением легко осуществим, но им, за исключением особых случаев, пользуются редко, поскольку нет особых оснований допускать, чтобы одна и та же единица встречалась в выборке дважды.

При простом случайном отборе для получения выводов о параметрах совокупности используют выборочное среднее в качестве оценки среднего значения признака совокупности, а дисперсию признака по выборке — для оценки дисперсии признака совокупности. Для простой случайной выборки усредненные выборочные средние и дисперсии точно равны среднему и дисперсии признака совокупности.

ФОРМУЛЫ ОЦЕНИВАНИЯ ПРИ ПРОСТОМ СЛУЧАЙНОМ ОТБОРЕ

Источник

Оцените статью
Разные способы