Выберите способы решения логических задач

Как решать логические и математические задачи

Решение задач на логику — отличная гимнастика для ума детей и взрослых на каждый день. На ЛогикЛайк более 3500 заданий с ответами и пояснениями, полноценный учебный комплекс для развития логики и способностей к математике.

Решаем логические задачи

Чтобы научиться решать типовые логические задачи, простые и нестандартные математические задачи, важно знать основные приемы и методы их решения. Ведь решить одну и ту же задачу и прийти к правильному ответу во многих случаях можно разными способами.

Знание и понимание различных методов решения поможет определить, какой способ подойдет лучше в каждом конкретном случае, чтобы выбрать наиболее быстрый и простой путь получения ответа.

К «классическим» логическим задачам относятся текстовые задачи, цель решения которых состоит в распознавании объектов или расположении их в определенном порядке в соответствии с заданными условиями.

Более сложными и увлекательными типами заданий являются задачи, в которых отдельные утверждения являются истинными, а другие ложными. Задачи на перемещение, перекладывание, взвешивание, переливание — самые яркие примеры широкого ряда нестандартных задач на логику.

Основные методы решения логических задач

  • метод рассуждений;
  • с помощью таблиц истинности;
  • метод блок-схем;
  • средствами алгебры логики (алгебры высказываний);
  • графический (в том числе, «дерево логических условий», метод кругов Эйлера);
  • метод математического бильярда.

Давайте рассмотрим подробнее с примерами три популярных способа решения логических задач, которые мы рекомендуем использовать в начальной школе (детям 6-12 лет):

  • метод последовательных рассуждений;
  • разновидность метода рассуждений — «с конца»;
  • табличный способ.

Метод последовательных рассуждений

Самый простой способ решения несложных задач заключается в последовательных рассуждениях с использованием всех известных условий. Выводы из утверждений, являющихся условиями задачи, постепенно приводят к ответу на поставленный вопрос.

На столе лежат Голубой , Зеленый , Коричневый и Оранжевый карандаши.

Третьим лежит карандаш, в имени которого больше всего букв. Голубой карандаш лежит между Коричневым и Оранжевым .

Разложи карандаши в описанном порядке.

Рассуждаем. Последовательно используем условия задачи для формулирования выводов о позиции, на которой должен лежать каждый следующий карандаш.

  • Больше всего букв в слове «коричневый», значит, он лежит третьим.
  • Известно, что голубой карандаш лежит между коричневым и оранжевым. Справа от коричневого есть только одна позиция, значит, расположить голубой между коричневым и другим карандашом возможно только слева от коричневого.
  • Следующий вывод на основе предыдущего: голубой карандаш лежит на второй позиции, а оранжевый — на первой.
  • Для зеленого карандаша осталась последняя позиция — он лежит четвертым.

Метод «с конца»

Такой способ решения является разновидностью метода рассуждений и отлично подходит для задач, в которых нам известен результат совершения определенных действий, а вопрос состоит в восстановлении первоначальной картины.

Бабушка испекла для троих внуков рогалики и оставила их на столе. Коля забежал перекусить первым. Сосчитал все рогалики, взял свою долю и убежал.
Аня зашла в дом позже. Она не знала, что Коля уже взял рогалики, сосчитала их и, разделив на троих, взяла свою долю.
Третьим пришел Гена, который тоже разделил остаток выпечки на троих и взял свою долю.
На столе осталось 8 рогаликов.

Сколько рогаликов из восьми оставшихся должен съесть каждый, чтобы в результате все съели поровну?

Начинаем рассуждение «с конца».
Гена оставил для Ани и Коли 8 рогаликов (каждому по 4). Получается, и сам он съел 4 рогалика: 8 + 4 = 12.
Аня оставила для братьев 12 рогаликов (каждому по 6). Значит, и сама она съела 6 штук: 12 + 6 = 18.
Коля оставил ребятам 18 рогаликов. Значит, сам съел 9: 18 + 9 = 27.

Бабушка положила на стол 27 рогаликов, рассчитывая, что каждому достанется по 9 штук. Поскольку Коля уже съел свою долю, Аня должна съесть 3, а Гена — 5 рогаликов.

Читайте также:  Понятие виды способы приватизации муниципального имущества

Решение логических задач с помощью таблиц истинности

Суть метода состоит в фиксации условий задачи и полученных результатов рассуждений в специально составленных под задачу таблицах. В зависимости от того, является высказывание истинным или ложным, соответствующие ячейки таблицы заполняются знаками «+» и «-» либо «1» и «0».

Три спортсмена ( красный , синий и зеленый ) играли в баскетбол.
Когда мяч оказался в корзине, красный воскликнул: «Мяч забросил синий».
Синий возразил: «Мяч забросил зеленый».
Зеленый сказал: «Я не забрасывал».

Кто забросил мяч, если только один из троих сказал неправду?

Сначала таблицу составляют: слева записывают все утверждения, которые содержатся в условии, а сверху — возможные варианты ответа.

Затем таблицу последовательно заполняют: верные утверждения отмечают знаком «+», а ложные утверждения — знаком «-«.

Рассмотрим первый вариант ответа («мяч забросил красный «), проанализируем утверждения, записанные слева, и заполним первый столбик.
Исходя из нашего предположения («мяч забросил красный «), утверждение «мяч забросил синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый» также ложь. Заполняем ячейку знаком «-«.
Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».

Рассмотрим второй вариант ответа (предположим, что мяч забросил зеленый ) и заполним второй столбик.
Утверждение «мяч забросил Синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый « — истина. Заполняем ячейку знаком «+».
Утверждение зеленого «Я не забрасывал» – ложь. Ставим в ячейке «-«.

И, наконец, третий вариант: предположим, что «мяч забросил синий «.
Тогда утверждение «мяч забросил синий « — истина. Ставим в ячейке «+».
Утверждение «мяч забросил зеленый» — ложь. Заполняем ячейку знаком «-«. Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».

Так как по условию лишь один из троих ребят сказал неправду, в заполненной таблице выбираем такой вариант ответа, где будет только одно ложное утверждение (в столбце один знак «-«). Подходит третий столбец.

Значит, правильный ответ – мяч забросил синий.

Метод блок-схем

Метод блок-схем считается оптимальным вариантом для решения задач на взвешивание и на переливание жидкостей. Альтернативный способ решения этого типа задач — метод перебора вариантов — не всегда является оптимальным, да и назвать его системным довольно сложно.

  • графически (блок-схемой) описываем последовательность выполнения операций;
  • определяем порядок их выполнения;
  • в таблице фиксируем текущие состояния.

Подробнее об этом и других способах решения логических задач с примерами и описанием хода решения мы рассказываем в полном Курсе ЛогикЛайк по развитию логического мышления.

Отгадывайте самые интересные загадки на логику, собранные специально для постоянных читателей нашего блога и учеников LogicLike, решайте логические задачи онлайн вместе с тысячами детей и взрослых!

Учим детей 5-12 лет решать любые логические и математические задачи. Более 3500 занимательных заданий с ответами и пояснениями.

Источник

Информатика. 10 класс

Конспект урока

Информатика, 10 класс. Урок № 13.

Тема — Логические задачи и способы их решения

Перечень вопросов, рассматриваемых в теме: метод рассуждений, табличный метод, метод упрощения логических выражений.

Глоссарий по теме: для решения логических задач необходимо знать таблицы истинности логических операций и правила преобразования логических выражений (законы алгебры логики). Этот материал рассмотрен в предыдущих уроках №11,12.

Основная литература по теме урока:

Л. Л. Босова, А. Ю. Босова. Информатика. Базовый уровень: учебник для 10 класса

— М.: БИНОМ. Лаборатория знаний, 2017 (с.197—209)

Открытые электронные ресурсы по теме:

Теоретический материал для самостоятельного изучения

Исходными данными в логических задачах являются высказывания. Высказывания и взаимосвязи между ними бывают так сложны, что разобраться в них без использования специальных методов сложно. Способов решения логических задач немало, но наибольшее распространение получили метод рассуждений, табличный метод и метод упрощения логических выражений. Познакомимся с ними поочередно.

Читайте также:  Какие существуют способы обработки персональных данных ржд

Основная идея этого метода состоит в том, чтобы последовательно анализировать всю информацию, имеющуюся в задаче, и делать на этой основе выводы.

Пример 1. На одной улице стоят в ряд 4 дома, в каждом из которых живёт по одному человеку. Их зовут Василий, Семён, Геннадий и Иван. Известно, что все они имеют разные профессии: скрипач, столяр, охотник и врач. Известно, что:

— столяр живёт правее охотника;

— врач живёт левее охотника;

— скрипач живёт с краю;

— скрипач живёт рядом с врачом;

— Семён не скрипач и не живёт рядом со скрипачом;

— Иван живёт рядом с охотником;

— Василий живёт правее врача;

— Василий живёт через дом от Ивана.

Определим, кто где живёт.

Изобразим дома прямоугольниками и пронумеруем их:

Известно, что скрипач живёт с краю (3). Следовательно, он может жить в доме 1 или в доме 4.

Скрипач живёт рядом с врачом (4), т. е. врач может жить правее (дом 2) или левее (дом 3) скрипача.

Но врач живёт левее охотника (2), следовательно, скрипач не может жить в доме 4, т. к. в противном случае получится, что врач, живущий рядом с ним, живёт правее охотника, а это противоречит условию (2). Таким образом, скрипач живёт в доме 1, а врач — рядом с ним, в доме 2.

Так как врач живёт левее охотника (2), а столяр — правее охотника (1), то охотнику достается дом 3, а столяру — дом 4.

Так как Семён не скрипач и не живёт рядом со скрипачом (5), то он может жить в доме 3 или в доме 4.

Так как Иван живёт рядом с охотником (6), то он может жить в доме 2 или 4.

Так как Василий живёт правее врача (7), то он может жить в доме 3 или 4.

По условию (8) Василий живет через дом от Ивана, значит, в доме 1 может жить только Геннадий, в доме 2 — Иван, в доме 4 — Василий, в доме 3 — Семён.

Как видите, далеко не самая сложна задача потребовала достаточно серьезных рассуждений. Этот метод, как правило, применяется для решения простых задач.

Задачи о рыцарях и лжецах — это такой класс логических задач, в которых фигурируют персонажи:

— рыцарь — человек, всегда говорящий правду;

— лжец — человек, всегда говорящий ложь;

— обычный человек — человек, который в одних ситуациях может говорить правду, а в других лгать.

Решение подобных задач сводится к перебору вариантов и исключению тех из них, которые противоречат условию.

Пример 2. Двое жителей острова А и В разговаривали между собой в саду. Проходивший мимо незнакомец спросил у А: «Вы рыцарь или лжец?». Тот ответил, но так неразборчиво, что незнакомец не смог ничего понять. Тогда незнакомец спросил у В: «Что сказал А?».

«А сказал, что он лжец», — ответил В. Может ли незнакомец доверять ответу В? Мог ли А сказать, что он лжец?

Если А — рыцарь, то он скажет правду и сообщит, что он рыцарь.

Если А — лжец, то он скроет правду и сообщит, что он рыцарь.

Это значит, что В, утверждающий, что «А сказал, что он лжец» заведомо лжёт; он – лжец.

Определить, кем является А, в данной ситуации невозможно.

Для решения логических задач, связанных с рассмотрением нескольких конечных множеств, прибегают к помощи таблиц или графов. От того, насколько удачно выбрана их структура, во многом зависит успешность решения задачи.

Пример 3. В летнем лагере в одной палатке жили Алёша, Боря, Витя и Гриша. Все они разного возраста, учатся в разных классах (с 7-го по 10-й) и занимаются в разных кружках: математическом, авиамодельном, шахматном и фотокружке. Выяснилось, что

— фотограф старше Гриши;

Читайте также:  Страхование способ защиты имущественного интереса людей

— Алеша старше Вити, а шахматист старше Алёши;

— в воскресенье Алёша с фотографом играли в теннис, а Гриша в то же время проиграл авиамоделисту в городки.

Определим, кто в каком кружке занимается.

В этой задаче речь идёт о высказывательной форме (предикате) вида «Ученик х занимается в кружке у». Требуется определить такие значения х и у, чтобы высказывательная форма превратилась в истинное высказывание.

Рассмотрим условия (1)-(3) и сделаем выводы: Гриша — не фотограф (1); шахматист — не Алёша и не Витя (2); Алёша — не фотограф и не авиамоделист, Гриша — не фотограф и не авиамоделист (3). Отметим это в таблице:

Мы можем сделать вывод, что Алёша занимается математикой, а Гриша — шахматами:

Из того, что Гриша — шахматист и условий (1) и (2) можем расположить учеников по возрасту (в порядке возрастания): Витя — Алёша — Гриша — фотограф. Следовательно, Боря — фотограф.

Ответ: Витя (7 класс) занимается в авиамодельном кружке, Алёша (8 класс) — в математическом, Гриша (9 класс) — в шахматном, Боря (10 класс) — в фотокружке.

Использование таблиц истинности для решения логических задач

Аппарат алгебры логики позволяет применять к широкому классу логических задач универсальные методы, основанные на формализации условий задачи.

Одним из таких методов является построение таблицы истинности по условию задачи и её анализ. Для этого следует:

  1. Выделить из условия задачи элементарные (простые) высказывания и обозначить их буквами.
  2. Записать условие задачи на языке алгебры логики, соединив простые высказывания в составные с помощью логических операций.
  3. Построить таблицу истинности для полученных логических выражений.
  4. Выбрать решение – набор логических переменных (элементарных высказываний), при котором значения логических выражений соответствуют условиям задачи.
  5. Убедиться, что полученное решение удовлетворяет условиям задачи.

Пример 4. Три подразделения А, В, С торговой фирмы стремились получить по итогам года максимальную прибыль. Экономисты высказали следующие предположения:

  1. Если А получит максимальную прибыль, то максимальную прибыль получат В и С.
  2. А и С получат или не получат максимальную прибыль одновременно.
  3. Необходимым условием получения максимальной прибыли подразделением С является получение максимальной прибыли подразделением В.

По завершении года оказалось, что одно из трёх предположений ложно, а остальные два истинны.

Выясним, какие из названных подразделений получили максимальную прибыль.

Рассмотрим элементарные высказывания:

А — «А получит максимальную прибыль»;

В — «В получит максимальную прибыль»;

С — «С получит максимальную прибыль».

Запишем на языке алгебры логики прогнозы, высказанные экономистами:

Вспомним, что из трёх прогнозов F1, F2, F3 один оказался ложным, а два других — истинным. Эта ситуация соответствует четвёртой строке таблицы.

Ответ: максимальную прибыль получили подразделения В и С.

Метод упрощения логических выражений

Следующий формальный способ решения логических задач состоит в том, чтобы:

  1. Выделить из условия задачи элементарные (простые) высказывания и обозначить их буквами.
  2. Записать условие задачи на языке алгебры логики, соединив простые высказывания в составные с помощью логических операций.
  3. Составить единое логическое выражение, учитывающее все требования задачи.
  4. Используя законы алгебры логики, упростить полученное выражение и вычислить его значение.
  5. Выбрать решение – набор логических переменных (элементарных высказываний), при котором построенное логическое выражение является истинным.
  6. Убедиться, что полученное решение удовлетворяет условиям задачи.

Пример 5. На вопрос, кто из трёх учащихся изучал логику, был получен ответ: «Если изучал первый, то изучал и второй, но неверно, что если изучал третий, то изучал и второй». Кто из учащихся изучал логику?

Обозначим через А, В, С простые высказывания:

А — «Первый ученик изучал логику»;

В — «Второй ученик изучал логику»;

С — «Третий ученик изучал логику».

Из условия задачи следует истинность высказывания: .

Упростим получившееся высказывание:

Получившееся высказывание будет истинным только в случае, если С — истина, а А и В — ложь.

Источник

Оцените статью
Разные способы