Выберите способ верифицировать аналитические источники

Содержание
  1. Верификация методик анализа
  2. Что такое верификация?
  3. Отличие верификации от валидации
  4. Зачем делать верификацию?
  5. Литература по верификации
  6. Видео про верификацию (примеры)
  7. Шаблон протокола верификации для химической лаборатории
  8. Вопрос-ответ
  9. Кто несет ответственность за верификацию? Ваш шаблон гарантирует что этого эксперимента достаточно?
  10. Мы не аккредитованная лаборатория. Нам все равно надо делать верификацию?
  11. Верификация — это лишние затраты!
  12. Верификация гарантирует, что теперь у нас всегда будут достоверные результаты?
  13. В СССР никаких верификаций не делали, и нормально работали!
  14. Вы гарантируйте, что к шаблону не будет вопросов?
  15. По какому ГОСТу, нормативному документу составлен этот шаблон?
  16. А вот в ГОСТе, РМГ написано не так!
  17. А почему не оценивается погрешность / неопределенность?
  18. Кто утверждает критерии верификации? Где их брать?
  19. ВЫБОР, ВЕРИФИКАЦИЯ И ВАЛИДАЦИЯ МЕТОДОВ
  20. Основные положения
  21. Моменты, которые следует принять во внимание
  22. Верификация:
  23. Общие случаи перечислены ниже:
  24. Валидация:
  25. Два главных принципа валидации:
  26. Различные виды методов:
  27. Новый метод
  28. Соответствующая цели неопределённость, как часть процедуры валидации

Верификация методик анализа

Что такое верификация?

Верификация [verification] – подтверждение лабораторией способности получать достоверные результаты (пригодные для решения конкретной задачи) по готовой валидированной методике

Отличие верификации от валидации

Валидация
доказываем, что МЕТОДИКА пригодна для решения конкретной аналитической задачи, т.е. позволяет получать достоверные результаты

Верификация
доказываем, что ЛАБОРАТОРИЯ в состоянии получить достоверные результаты по данной ВАЛИДИРОВАННОЙ методике

Из таблицы сразу видно, что лаборатория, которая проводила валидацию «автоматически» доказала достоверность результатов, получаемых в своей лаборатории (естественно, при успешной валидации)

Зачем делать верификацию?

Коротко — чтобы быть уверенным, что лаборатория способна выдать достоверные результаты аналиа по этой методике.

Проведение верификации методик предусмотрено ISO 17025, ведущими фармакопеями и правилами GMP:

Лаборатория должна подтвердить, что она может правильно использовать стандартные методики, прежде чем приступить к испытаниям

п. 5.4.2 ГОСТ ИСО/МЭК 17025-2009

Лаборатория, которая использует методику испытаний и которая не выполняла ее первоначальную валидацию, должна верифицировать пригодность методики

п. 6.15 Правил надлежащей производственной практики (GMP) Евразийского экономического союза

Литература по верификации

  • Раздел 4 «Валидация или верификация?» The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics: Second edition (2014) (Eurachem Guide)
  • Валидация аналитических методик: пер. с англ. Яз. 2-го изд. Под ред. Г.Р. Нежиховского. Количественное описание неопределенности в аналитических измерений: пер. с англ. Яз. 3-го изд. Под. ред. Р.Л. Кадиса. Руководства для лабораторий. – СПб.: ЦОП «Профессия», 2016. – 312 с. (сайт издательства)
  • Г.Р. Нежиховский Валидация, верификация и аттестация методик, Контроль качества продукции, № 9, 2016
  • Правила надлежащей производственной практики (GMP) Евразийского экономического союза
  • Верификация (verification) и трансфер методик: система контроля качества лекарственных средств в свете изменений GMP, Аптека.ua, № 8 (979), 2015
  • ГОСТ ИСО/МЭК 17025-2009 Общие требования к компетентности испытательных и калибровочных лабораторий
  • USP Verification of Compendial Procedures
  • Глава 2 «Внедрение и использование методики анализа в лаборатории»
    Терещенко А.Г., Пикула Н.П. Внутрилабораторный контроль качества результатов химического анализа, Томск: STT, 2017
  • Р 50.2.060-2008 Внедрение стандартизованных методик количественного химического анализа в лаборатории. Подтверждение соответствия установленным требованиям
  • Приложения А и Б, РМГ 76-2014 ГСИ. Внутренний контроль качества результатов количественного химического анализа

Видео про верификацию (примеры)

Шаблон протокола верификации для химической лаборатории

Вопрос-ответ

Кто несет ответственность за верификацию? Ваш шаблон гарантирует что этого эксперимента достаточно?

Ответственность за достоверность выдаваемых результатов в полном объеме несет лаборатория — ее руководитель и специалисты лично. А верификация (наряду с валидацией и контролем качества) — важный элемент обеспечения достоверности анализа (QA).

Читайте также:  Способ приготовления фаршированных кальмаров

В шаблоне приведен минимальный, с нашей точки зрения объем эксперимента. Уверенно можем сказать — что лучше верификация в малом объеме, чем никакой верификации.

Мы не аккредитованная лаборатория. Нам все равно надо делать верификацию?

Любая лаборатория, даже не аккредитованная, несет полную ответственность за выдаваемые результаты. Верификация позволяет убедиться самим, и подтвердить документально, что по данной методике лаборатория может выдавать достоверные результаты.

Верификация — это лишние затраты!

Верификация выгодна любому предприятию, т.к. существенно снижает риски получения недостоверных результатов, и позволяет выявить проблему на старте, а не через год работы.

Потери от недостоверных результатов анализа (выпуск некачественной и опасной продукции, работа технологов «впустую» и др.) обычно на порядки более существенны, чем затраты на организацию нормальной работы лаборатории.

Верификация гарантирует, что теперь у нас всегда будут достоверные результаты?

Нет. Верификация — лишь один из элементов обеспечения достоверности анализа (QA).

Чтобы быть уверенным что и дальше результаты выдаются достоверные, проводят контроль качества и множество других процедур.

Хорошая книга — Причард Э., Барвик В. Контроль качества в аналитической химии, пер. с англ. (2007 г., Quality Assurance in Analytical Chemistry) под ред. Болдырева И.В, 2014

В СССР никаких верификаций не делали, и нормально работали!

Делали. Только называлась это по другому: «внедрение методики», «постановка методики», «отработка методики». Эту процедуру, в соответствии современными международными рекомендациями, мы называем верификацией.

Вы гарантируйте, что к шаблону не будет вопросов?

Нет. Это просто пример-шаблон, чтобы доработать его под себя. Ответственность лежит на конкретной лаборатории.

По какому ГОСТу, нормативному документу составлен этот шаблон?

Шаблон составлен на основе нашего опыта внедрения методик, здравого смысла, с опорой на международные рекомендации Eurachem «A Laboratory Guide to Method Validation and Related Topics» и некоторые Российские документы из рекомендованного списка литературы.

А вот в ГОСТе, РМГ написано не так!

Любой ГОСТ в России доброволен к применению:

добровольность применения заинтересованным лицом документов в области стандартизации и обязательность соблюдения указанным лицом требований, содержащихся в этих документах, в случае объявления об их использовании, а также в случае определения обязательности исполнения требований стандартов в рамках контрактных (договорных) обязательств

Если лаборатория приняла на себя обязательства использовать какой-то конкретный ГОСТ или РМГ (в договоре, руководстве по качеству, стандарте организации, обязательствах в рамках аккредитации, регуляторных требований, попадания в область гос. регулирования обеспечения единства измерений по ФЗ 102) — то значит надо ориентироваться на них.

Если лаборатория не обременена обязательствами, разумно опереться на Р 50.2.060, РМГ 76, РМГ 61, Eurachem «Laboratory guide to method validation» как на справочные документы, доработав шаблон под себя.

А почему не оценивается погрешность / неопределенность?

Шаблон содержит минимальный, наш взгляд, объем эксперимента, чтобы можно было убедиться в нормальной работе методики, и начать работать. Делать расчет неопределенности / погрешности на основе только 3 серий измерений на наш взгляд не совсем корректно.

Можно расширить объем эксперимента (количество серий), и рассчитать погрешность / неопределенность на основе оценок правильности и прецизионности (по ГОСТ Р ИСО 21748-2012, РМГ 61-2010, Р 50.2.060-2008, приложениям А и Б, РМГ 76-2014).

Читайте также:  Способ разработки добычи полезных ископаемых

Наша рекомендация — делать все поэтапно. Если, например, сейчас вообще не делается верификация, то лучше начать делать «по простому», не усложнять расчеты.

Кто утверждает критерии верификации? Где их брать?

Критерии приемлемости утверждает тот, кто несет ответственность за достоверность результатов анализа и верификацию — лаборатория. Правильный, обоснованный выбор критериев — ключевой вопрос, «сердце» верификации.

Т.к верификации подвергаются только валидированные методики (для которых уже доказано, что методика позволяет получать результаты, пригодных для достоверного принятия управленческих решений по результатам анализа), разумно проверить выполнение базовых валидционных критериев (пусть в меньшем объеме): повторяемости, промежуточной прецзионности, правильности.

Для обоснования требований к верификационным критериям есть несколько подходов:

  • Если в методике приведены значения показателей (повторяемости, промежуточной прецизионности, правильности) — проверяют в сокращенном объеме, выполняются ли они;
  • Если в методики значения показателей не приведены — запрашивают валидационный отчет, и проверяют выполнение базовых валидционных критериев (повторяемости, промежуточной прецзионности, правильности) в сокращенном объеме
  • Устанавливают требования к показателям, исходя из требований к неопределенности (погрешности). Неопределенность (погрешность) может быть прописана в методике, или определяться аналитической задачей.
  • Устанавливают требования к показателям «экспертно», исходя из опыта. Например, у продукта норма «от 9,5% до 10,5%». Чтобы делать достоверную отбраковку в этом случае, разумно потребовать СКО промежуточной прецзионности

Источник

ВЫБОР, ВЕРИФИКАЦИЯ И ВАЛИДАЦИЯ МЕТОДОВ

Основные положения

Определения и требования к выбору, верификации и валидации методов приведены в разделах 3.8, 3.9 и 7.2 ISO/IEC 17025:2017.

Моменты, которые следует принять во внимание

Заказчик может определить метод, который будет использоваться, в противном случае лаборатория может выбрать подходящий метод и проинформировать заказчика.

Согласие заказчика обычно предоставляется в письменной форме; соглашение может быть частью договора. Если имеет место отступление от метода, заказчик должен быть уведомлен об этом отступлении, если конкретное утверждение уже не было включено как часть договора. Отступление от стандартного метода требует валидации метода.

Верификация:

Верификацию следует задокументировать таким образом, чтобы предоставить доказательства того, что лаборатория способна достигнуть требуемых рабочих характеристик метода; это может включать:

Оценку повторяемости и/или воспроизводимости

Квалификацию оператора (обучение, опыт, компетенции, …)

Условия окружающей среды

Материалы или реактивы

  • Любые другие характеристики, которые могут повлиять на результат
  • Общие случаи перечислены ниже:

    Методы, изложенные в национальных и международных стандартах, следует рассматривать как валидированные. Тем не менее, должно быть подтверждено, что при применении (метода) в лаборатории все условия выполнены. Это включает в себя заявленную неопределённость. Если неопределённость результата не упоминается или не устанавливается в национальном или международном стандарте, то лаборатории следует подумать про неопределенность при применении такого стандарта.

  • Редко используемые методы. Если метод используется только время от времени, поддержание компетентности персонала или пригодности оборудования могут быть поставлены под сомнение. В данном случае следует привести обоснование, учитывая, например, опыт и образование персонала в областях, близких к рассматриваемому методу, или напрямую самого метода.
  • Пример: При проведении испытаний на прочность и деформации 24-футовых контейнеров один раз в два года, при верификации следует учитывать, имеет ли персонал достаточную подготовку по механике или механике твёрдых тел и регулярно ли проводятся в лаборатории другие крупномасштабные механические испытания.

    Валидация:

    При планировании валидации можно значительно сократить работы при наличии технической компетентности и используя системный подход. Одна из целей заключается в определении наиболее важных и заслуживающих наибольшего внимания факторов. Можно выделить три основных этапа:

    Читайте также:  Kanebo illuminating serum способ применения

    Различать метод испытаний и методы получения и подготовки пробы, включая отбор проб.

    Рассмотреть факторы, влияющие на испытания или измерение (оборудование и калибровка, подготовка пробы, методика испытаний или измерений, анализ и способ получения результатов).

  • Рассмотреть дополнительные изменяющиеся факторы (окружающая среда, образование и опыт оператора, частота применения метода).
  • В документации следует чётко описать, какие факторы имеют значение и почему и как они рассматриваются при валидации. Следует описать условия и ограничения.

    Примечание: Одним из важных отличительных признаков является то, что метод может быть достоверным, но не обязательно подходящим, например, результат – это то, что заявлено, но не свидетельствует о том, что действительно нужно. Можно найти много примеров в старых, но все еще применяемых стандартах в области испытания продукции.

    Два главных принципа валидации:

    Различные виды методов:

    Расширение (области применения) метода или изменение в методологии очень важны для обеспечения нужд инновационных отраслей промышленности. Такая валидация важна для эффективной аккредитации в гибкой области. Рекомендуется использовать научные знания или опыт. Необходима хорошая компетентность персонала лаборатории.

    Пример: Исследования электромагнитной совместимости (EMC) в расширенных диапазонах частот требуют как научной базы, так и опыта в реальной безэховой испытательной камере, чтобы оценить необходимое количество геометрий и конфигураций антенны для достижения итоговой неопределённости.

    Собственные методы должны быть валидированы лабораторией, но с учётом перспектив затрат и результатов и по согласованию с заказчиком. Часто методика является расширением или простой комбинацией известных методов.

    Пример: Крутящий момент, необходимый для открытия крышки, может быть измерен простым способом с неопределенностью, скажем, 3 %, но достичь неопределенности 1 % может быть достаточно трудно. Если изменение в крутящем моменте между банками обычно составляет 10 %, а цель заключается в проверке возможности открывать банки пожилыми людьми, очевидно, что обоснованной будет (неопределенность) 3 %.

    Валидация является относительным понятием, и её объем всегда следует определять с учётом предполагаемого использования результатов. Это подразумевается в указанном выше пункте 7.2.2.

    Новый метод

    Соответствующая цели неопределённость, как часть процедуры валидации

    Оценивание неопределённости может показаться сложным и не всегда возможным. Чаще всего существуют простые способы получения надёжных оценок неопределённости. Постоянно обновляемый список подходящих документов доступен на сайте EUROLAB (www.eurolab.org) (для справочной информации используйте GUM).

    Если возможно, в оценку могут быть включены определения инструментальной неопределённости и целевой неопределённости (понятия описаны в VIM).

    Можно привести следующие некоторые практические правила:

    • Можно сделать различие между дисперсией (рассеянием) в испытываемых объектах (представительность образца) и дисперсией (неопределённостью) метода испытаний.
    • Выбор типа (оценивания неопределенности) А или типа В следует делать в соответствии с особенностями вклада.
    • Если необходимо использовать и суммировать оценки по типу В, важно определить те, которые вносят наибольший вклад.
    • Остальные (менее 5 % от наибольшего вклада), как правило, можно отбросить.

    В химическом анализе, например, мера локальной неопределенности, повторяемость, используется для контроля стабильности производственных процессов и т.д., которые могут содержать смещение, систематическую погрешность, вносящих вклад в общую неопределённость. В других областях, таких как продукция с особыми требованиями к обеспечению безопасности при применении, необходимо использовать общую неопределённость, связывающую результаты с истинным значением.

    Понятием, связанным с этим, является воспроизводимость, которая описывает, как правило, для некоторого количества лабораторий и операторов возможность получения схожих результатов с течением времени, применяя один метод.

    Источник

    Оцените статью
    Разные способы