Все возможные способы получения серной кислоты

Производство серной кислоты

Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита (серного колчедана) FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Источник

Серная кислота

Серная кислота , H2SO4, сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях — тяжёлая маслянистая жидкость без цвета и запаха. В технике серную кислоту называют её смеси как с водой, так и с серным ангидридом. Если молярное отношение SO3 : Н2О меньше 1, то это водный раствор серной кислоты, если больше 1, — раствор SO3 в серной кислоте.

Природные залежи самородной серы сравнительно невелики. Общее содержание серы в земной коре составляет 0,1%. Сера содержится в нефти, каменном угле, горючих и топочных газах. Чаще сера встречается в природе в виде соединений с цинком, медью и другими металлами. Следует отметить, что доля колчедана и серы в общем балансе сернокислотного сырья постепенно уменьшается, а доля серы, извлекаемой из различных отходов, постепенно возрастает. Возможности получения серной кислоты из отходов весьма значительны. Использование отходящих газов цветной металлургии позволяет получать, без специальных затрат в сернокислотных системах на обжиг серосодержащего сырья.

Физические и химические свойства серной кислоты

Стопроцентная H2SO4 (SO3 х H2O) называется моногидратом. Соединение не дымит, в концентрированном виде не разрушает черные металлы, являясь при этом одной из самых сильных кислот;

  • вещество пагубным образом действует на растительные и животные ткани, отнимая и них воду, вследствие чего они обугливаются.
  • кристаллизуется при 10,45 «С;
  • tkип 296,2 «С;
  • плотность 1,9203 г/см3;
  • теплоёмкость 1,62 дж/г.

Серная кислота смешивается с Н2О и SO3 в любых соотношениях, образуя соединения:

  • H2SO4 х 4 H2O (tпл — 28,36 «С),
  • H2SO4 х 3 H2O (tпл — 36,31 «С),
  • H2SO4 х 2 H2O (tпл — 39,60 «С),
  • H2SO4 х H2O (tпл — 8,48 «С),
  • H2SO4 х SO3 (H2S2O7 — двусерная или пиросерная кислота, tпл 35,15 «С) — олеум,
  • H2SO х 2 SO3 (H2S3O10 — трисерная кислота, tпл 1,20 «C).

При нагревании и кипении водных растворов серной кислоты, содержащих до 70% H2SO4, в паровую фазу выделяются только пары воды. Над более концентрированными растворами появляются и пары серной кислоты. Раствор 98,3% H2SO4 (азеотропная смесь) при кипении (336,5 «С) перегоняется полностью. Серная кислота, содержащая свыше 98,3% H2SO4, при нагревании выделяет пары SO3.
Концентрированная серная кислота — сильный окислитель. Она окисляет HI и НВг до свободных галогенов. При нагревании окисляет все металлы, кроме Au и платиновых металлов (за исключением Pd). На холоде концентрированная серная кислота пассивирует многие металлы, в том числе РЬ, Cr, Ni, сталь, чугун. Разбавленная серная кислота реагирует со всеми металлами (кроме РЬ), предшествующими водороду в ряду напряжении, например: Zn + H2SO4 = ZnSO4 + Н2.

Как сильная кислота H2SO4 вытесняет более слабые кислоты из их солей, например борную кислоту из буры:

Na2B4O7 + H2SO4 + 5 H2O = Na2SO4 + 4 H2BO3,

а при нагревании вытесняет более летучие кислоты, например:

NaNO3 + H2SO4 = NaHSO4 + HNO3.

Серная кислота отнимает химически связанную воду от органических соединений, содержащих гидроксильные группы — ОН. Дегидратация этилового спирта в присутствии концентрированной серной кислоты приводит к получению этилена или диэтилового эфира. Обугливание сахара, целлюлозы, крахмала и других углеводов при контакте с серной кислотой объясняется также их обезвоживанием. Как двухосновная, серная кислота образует два типа солей: сульфаты и гидросульфаты.

Аппарат Назначение и уравнения реакций
Печь для обжига 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое«. Снизу (принцип противотока) пропускают воздух, обогащённый кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800 о С

Циклон Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат 2SO2 + O2 ↔ 2SO3 + Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  • температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500 о С. Для того, чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  • давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня
Температура замерзания серной кислоты:
концентрация, % темп.замерз., «С
74,7 -20
76,4 -20
78,1 -20
79,5 -7,5
80,1 -8,5
81,5 -0,2
83,5 1,6
84,3 8,5
85,7 4,6
87,9 -9
90,4 -20
92,1 -35
95,6 -20

Сырьё для получения серной кислоты

Сырьём для получения серной кислоты могут служить: сера, серный колчедан FeS2, отходящие газы печей окислительного обжига сульфидных руд Zn, Сu, РЬ и других металлов, содержащие SO2. В России основное количество серной кислоты получают из серного колчедана. Сжигают FeS2 в печах, где он находится в состоянии кипящего слоя. Это достигается быстрым продуванием воздуха через слой тонко измельченного колчедана. Получаемая газовая смесь содержит SO2, O2, N2, примеси SO3, паров Н2О, As2O3, SiO2 и другие, и несёт много огарковой пыли, от которой газы очищаются в электрофильтрах.

Способы получения серной кислоты

Серную кислоту получают из SO2 двумя способами: нитрозным (башенным) и контактным.

Переработка SO2 в серную кислоту по нитрозному способу осуществляется в продукционных башнях — цилиндрических резервуарах (высотой 15 м и более), заполненных насадкой из керамических колец. Сверху, навстречу газовому потоку разбрызгивается «нитроза» — разбавленная серная кислота, содержащая нитрозилсерную кислоту NOOSO3H, получаемую по реакции:

N2O3 + 2 H2SO4 = 2 NOOSO3H + H2O .

Окисление SO2 окислами азота происходит в растворе после его абсорбции нитрозой. Водою нитроза гидролизуется:

NOOSO3H + H2O = H2SO4 + HNO2.

Сернистый газ, поступивший в башни, с водой образует сернистую кислоту:

SO2 + H2O = H2SO3.

Взаимодействие HNO2 и H2SO3 приводит к получению серной кислоты:

2 HNO2 + H2SO3 = H2SO4 + 2 NO + H2O.

Выделяющаяся NO превращается в окислительной башне в N2O3 (точнее в смесь NO + NO2). Оттуда газы поступают в поглотительные башни, где навстречу им сверху подаётся серная кислота. Образуется нитроза, которую перекачивают в продукционные башни. Таким образом осуществляется непрерывность производства и круговорот окислов азота. Неизбежные потери их с выхлопными газами восполняются добавлением HNO3.

Серная кислота, получаемая нитрозным способом, имеет недостаточно высокую концентрацию и содержит вредные примеси (например, As). Её производство сопровождается выбросом в атмосферу окислов азота («лисий хвост», названный так по цвету NO2).

Принцип контактного способа производства серной кислоты был открыт в 1831 П. Филипсом (Великобритания). Первым катализатором была платина. В конце 19 — начале 20 вв. было открыто ускорение окисления SO2 в SO3 ванадиевым ангидридом V2O5. Особенно большую роль в изучении действия ванадиевых катализаторов и их подборе сыграли исследования советских учёных А. Е. Ададурова, Г. К. Борескова, Ф. Н. Юшкевича.

Современные сернокислотные заводы строят для работы по контактному методу. В качестве основы катализатора применяются окислы ванадия с добавками SiO2, Al2O3, K2O, CaO, BaO в различных соотношениях. Все ванадиевые контактные массы проявляют свою активность только при температуре не ниже

420 «С. В контактном аппарате газ проходит обычно 4 или 5 слоев контактной массы. В производстве серной кислоты контактным способом обжиговый газ предварительно очищают от примесей, отравляющих катализатор. As, Se и остатки пыли удаляют в промывных башнях, орошаемых серной кислотой. От тумана серную кислоту (образующейся из присутствующих в газовой смеси SO3 и H2O) освобождают в мокрых электрофильтрах. Пары H2O поглощаются концентрированной серной кислотой в сушильных башнях. Затем смесь SO2 с воздухом проходит через катализатор (контактную массу) и окисляется до SO3:

SO2 + 1/2 O2 = SO3.

Серный ангидрид далее поглощается водой, содержащейся в разбавленной H2SO4:

SO3 + H2O = H2SO4.

В зависимости от количества воды, поступившей в процесс, получается раствор серной кислоты в воде или олеум.
Посредством данного метода сейчас вырабатывается порядка 80% H2SO4 в мире.

Применение серной кислоты

Серная кислота может служить для очистки нефтепродуктов от сернистых, непредельных органических соединений.

В металлургии серная кислота применяется для удаления окалины с проволоки, а также листов перед лужением и оцинкованием (разбавленная), для травления разичных металлических поверхностей перед покрытием их хромом, медью, никелем и др. Также с помощью серной кислоты разлагают комплексные руды (в частности, урановые).

В органическом синтезе серная кислота концентрированная является необходимым компонентом нитрующих смесей, а также сульфирующим средством при получении многих красителей и лекарственных веществ.

Широко применяется серная кислота для производства удобрений, этилового спирта, искусственного волокна, капролактама, двуокиси титана, анилиновых красителей и целого ряда других химических соединений.

Серная кислота отработанная (отход) применяется в химической, металлургической, деревообрабатывающей и других отраслях промышленности Серная кислота аккумуляторная применяется в производстве свинцово-кислотных источников тока.

Источник

Читайте также:  Опыты как способ получения информации
Оцените статью
Разные способы