Все возможные способы получения пентана

Способы получения. В обычных условиях первые четыре чле­на гомологического ряда алканов (C1 – С4) – газы. Нормальные алканы от пентана до гептадекана (C5 – С17 ) – жидкости,

Физические свойства

В обычных условиях первые четыре чле­на гомологического ряда алканов (C1 – С4) – газы. Нормальные алканы от пентана до гептадекана (C5 – С17 ) – жидкости, начиная с C18 и выше – твердые вещества. По мере увеличения числа атомов углерода в цепи, т.е. с ростом относительной молекулярной массы, возрастают температуры кипения и плавления алканов. При одина­ковом числе атомов углерода в молекуле алканы с разветвленным строением имеют более низкие температуры кипения, чем нормаль­ные алканы.

Алканы практически нерастворимы в воде, так как их молекулы малополярны и не взаимодействуют с молекулами воды, они хоро­шо растворяются в неполярных органических растворителях, таких как бензол, тетрахлорметан и др. Жидкие алканы легко смешивают­ся друг с другом.

Основные природные источники алканов – нефть и природный газ. Различные фракции нефти содержат алканы от C5H12 до С30Н62. Природный газ состоит из ме­тана (95%) с примесью этана и пропана.

Из синтетических методов получения алканов можно выделить следующие:

1. Получение из ненасыщенных углеводородов. Взаимодействие алкенов или алкинов с водородом («гидрирование») происходит в присутствии металлических катализаторов (Ni, Pd) при нагревании:

2. Получение из галогенпроизводных. При нагревании моногалогензамещенных алканов с металлическим натрием получают алканы с удвоенным числом атомов углерода (реакция Вюрца):

Подобную реакцию не проводят с двумя разными галогензамещенными алканами, поскольку при этом получается смесь трех раз­личных алканов.

Читайте также:  Способы самоконтроля физического состояния

3. Получение из солей карбоновых кислот. При сплавлении безводных солей карбоновых кислот с щелочами получают алканы, содержащие на один атом углерода меньше по сравнению с углеродной цепью исходных карбоновых кислот (реакция Дюма):

4. Получение метана. В электрической дуге, горящей в атмосфе­ре водорода, образуется значительное количество метана:

Такая же реакция идет при нагревании углерода в атмосфере во­дорода но 400-500 °С при повышенном давлении в присутствии ка­тализатора.

В лабораторных условиях метан можно получить из карбида алюминия:

Источник

Пентан: способы получения и химические свойства

Пентан C5H12 – это предельный углеводород, содержащий пять атомов углерода в углеродной цепи. Бесцветная жидкость с характерным запахом, нерастворим в воде и не смешивается с ней.

Гомологический ряд пентана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
Метан CH4
Этан C2H6
Пропан C3H8
Бутан C4H10
Пентан C5H12
Гексан C6H14
Гептан C7H16
Октан C8H18
Нонан C9H20
Декан C10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Строение пентана

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp 3 :

При образовании связи С–С происходит перекрывание sp 3 -гибридных орбиталей атомов углерода:

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Читайте также:  Как избавится от пяточной шпоры народными способами

Это соответствует тетраэдрическому строению.

Например, в молекуле пентана C5H12 атомы водорода располагаются в пространстве в вершинах тетраэдров, центрами которых являются атомы углерода. При этом углеродный скелет имеет зигзагообразное строение.

Изомерия пентана

Структурная изомерия

Для пентана характерна структурная изомерия – изомерия углеродного скелета.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомеры углеродного скелета отличаются строением углеродного скелета.

Например.

Для углеводородов состава С5Н12 существуют три изомера углеродного скелета: н-пентан, метилбутан (изопентан), диметилпропан (неопентан)

Пентан Изопентан
CH3-CH2-CH2-CH2-CH3 CH3-CH(CH3)-CH2-CH3

Для пентана не характерна пространственная изомерия.

Химические свойства пентана

Пентан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для пентана характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для пентана характерны радикальные реакции.

Пентан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Пентан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании пентана образуется смесь хлорпроизводных.

Например, при хлорировании пентана образуются 1-хлорпентан, 2-хлорпентан и 3-хлорпентан:

Бромирование протекает более медленно и избирательно.

Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.

С третичный–Н > С вторичный–Н > С первичный–Н

Например, при бромировании пентана преимущественно образуются 3-бромпентан и 2-бромпентан:

1.2. Нитрование пентана

Пентан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в пентане замещается на нитрогруппу NO2.

Например. При нитровании пентана образуются преимущественно 2-нитропентан и 3-нитропентан:

2. Дегидрирование пентана

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

Алканы с длинным углеродным скелетом, содержащие 5 и более атомов углерода в главной цепи, при дегидрировании образуют циклические соединения.

При этом протекает дегидроциклизация – процесс отщепления водорода с образованием замкнутого цикла.

Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:

3. Окисление пентана

Пентан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Пентан горит с образованием углекислого газа и воды. Реакция горения пентана сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении пентана в недостатке кислорода может образоваться угарный газ СО или сажа С.

Получение пентана

1. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии гексаноата натрия с гидроксидом натрия при сплавлении образуются пентан и карбонат натрия:

CH3–CH2–CH2–CH2– CH2 –COONa + NaOH CH3–CH2–CH2 – CH2 – CH3 + Na2CO3

3. Гидрирование алкенов и алкинов

Пентан можно получить из пентена или пентина:

При гидрировании пентена-1 или пентена-2 образуется пентан:

При полном гидрировании пентина-1 или пентина-2 также образуется пентан:

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Из угарного газа и водорода можно получить пентан:

5. Получение пентана в промышленности

В промышленности пентан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Источник

Читайте также:  Способ измерения давления твердого тела
Оцените статью
Разные способы