Все способы решения текстовых задач

Все способы решения текстовых задач

Так как лап на 10 больше чем ушей.

Составим и решим уравнение:4х – 2х = 102х= 10 │: 2х = 5

Ответ: 5 кошек грелось на солнышке.

способ

1. На сколько лап больше чем ушей у одной кошки?4 – 2 = 2 (шт.)

2. Сколько кошек грелось на солнышке?10 : 2 = 5 (шт.)

Ответ: 5 кошек грелось на солнышке.

Задача7. В хозяйстве имеются куры и овцы. Сколько тех и других, если известно, что у них вместе 19 голов и 46 ног?

Составленное уравнение учащиеся решают самостоятельно, с последующей проверкой.

2х + 76 – 4х = 46-2х = -30 │: (-2)х= 1515 шт. – куры19 – 15 = 4 (шт.) – овцы

Ответ: 15 кур, 4 овцы

Логический метод.

Задача 8. Кто из учеников Саша, Сергей, Дима и Андрей играет, а кто не играет в шахматы, если известно следующее:

а) если Саша и Сергей играет, то Дима не играет;

б) если Сергей не играет, то играют Дима и Андрей;

Если Саша и Сережа играют, то Дима не играет.

Если играют Дима и Андрей, то Сережа не играет.

Так как Дима по условию играет в шахматы, значит – это Дима и Андрей играют в шахматы.

Ответ: в шахматы играют ученики Дима и Андрей, а Саша и Сергей – не играют.

Задача 9. Поют в хоре и занимаются танцами 82 ученика, занимаются танцами и художественной гимнастикой 32 ученика, а поют в хоре и занимаются художественной гимнастикой 78 учеников. Сколько учеников поют в хоре, занимаются танцами и художественной гимнастикой отдельно, если известно, что каждый ученик занимается только чем-то одним?

1) 82 32 + 78 = 192 (чел.) — удвоенное число учеников, поющих в хоре, занимающихся танцами и художественной гимнастикой;

2) 192 : 2 = 96 (чел.) — поют в хоре, занимаются танцами и художественной гимнастикой;

3) 96 – 32 = 64 (чел.) — поют в хоре;

4) 96 – 78 = 18 (чел.) — занимаются танцами;

5) 96 – 82 = 14 (чел.) — занимаются художественной гимнастикой.

1) 82 – 32 = 50 (чел.) –на столько больше учеников поют в хоре, чем

занимаются художественной гимнастикой;

2) 50 + 78 = 128 (чел.) — удвоенное число учеников, поющих в хоре;

3) 128 : 2 = 64 (чел.) — поют в хоре;

4) 78 – 64 = 14 (чел.) — занимаются художественной гимнастикой;

5) 82 – 64 = 18 (чел.) — занимаются танцами.

Ответ: 64 ученика поют в хоре, 14 учеников занимаются художественной гимнастикой, 18 учеников занимаются танцами.

Среди учащихся 5 и 6 классов, в количестве 33 человек с предложенными задачами справилось 12 человек. Задачи на проценты в 5 классе учащиеся ещё не умеют решать. Обратились за помощью 8 учащихся, и потом они тоже справились с предложенными задачами.

Отсюда можно сделать вывод, что 37% успешно решили все задачи. Прибегнув к помощи, ещё 24% учащихся смогли справиться с данными задачами. Особые затруднения вызвали логические задачи.

Подводим итог: с задачами более простыми в целом ученики 5-го и 6-го классов справляются, но если добавляются немного больше элементов в рассуждениях, то справляются с такими заданиями не все.

Так же был проведён соц. Опрос среди учащихся 5-6 классов. Всем задавали вопрос: «Какие задачи легче решать: математические или логические?» В опросе участвовали 33 ученика. 25 учеников ответили – математические, 3 ученика – логические, 5 учеников – ни какие не могут решить.

Вывод: математические задачи легче решить 76-ти % опрошенных, логические – 10% и 14% не смогут решить никакую задачу.

Заключение

Для достижения цели данного исследования были выполнены следующие задачи:

1.Был произведен анализ некоторой методической и школьной литературы с точки зрения изучения методов решения задач в школе на уроках математики.

2.На основе изученного материла, были описаны методы и способы решения текстовых задач, в основной школе. С кратким описанием и приведением примеров.

3. В результате были описаны наиболее часто встречающиеся методы используемые в школьном курсе математики в 5 – 6 классах.

Таким образом, была достигнута цель данного исследования: описать методы и способы решения текстовой задачи в курсе изучения математики 5 – 6 классов.

Литература

1.Виленкин Н.Я. Математика: Учебник для 5 класса общеобразовательных учреждений// Н.Я.Виленкин, В.И. Жохов, А.С.Чесноков, С.И.Шварцбурд. – М.: Мнемозина: 1999-2004. – 384 с.

2.Виленкин Н.Я. Математика: Учебник для 6 класса общеобразовательных учреждений// Н.Я.Виленкин, В.И. Жохов, А.С.Чесноков, С.И.Шварцбурд. – М.: Мнемозина, 1999-2004. – 384 с.

3.Дорофеев Г.В. Математика 6 класс.-Просвещение,:2013.

4.Матвеева Г. Логические задачи // Математика. — 1999. № 25. — С. 4-8.

5. Фридман, Л.М. Как научиться решать задачи [Текст] : Кн. для учащихся ст. кл. средн. шк. / Л.М. Фридман, Е.Н. Турецкий.– 3-е изд., дораб.– М.: Просвещение, 1989.– 192 с.: ил.

6. Целищева, И. Как помочь каждому ученику самост-но решать текстовые задачи [Текст] / И. Целищева, С. Зайцева // Нач. шк.: еженед. прил. к газ. «Первое сентября».– 2001.– 00.05 (№ 18). С. 2-5.

Читайте также:  Отец четырех девочек пытается всеми способами оградить своих наследниц от реального

7. Шарыгин И.Ф. , Шевкин Е.А. Задачи на смекалку.-Москва,:Просвещение,1996.-65с.

Приложение

«ПАМЯТКА «КАК РЕШАТЬ ТЕКСТОВЫЕ ЗАДАЧИ»

1. Прочитай задачу и представь себе то, о чем в ней говорится.

2. Выдели условие и вопрос.

3. Запиши условие кратко или выполни чертёж.

4. Подумай можно ли сразу ответить на вопрос задачи. Если нет, то почему. Что надо узнать сначала, что потом?

5. Составь план решения.

6. Выполни решение.

7. Проверь решение и запиши ответ задачи.Примерный план ответа-рассуждения при решении задачи:

1.Арифметический метод.

1. Известно, что … (расскажи условие задачи)

2. Надо узнать… (повтори вопрос)

3. Чтобы ответить на вопрос задачи, надо …

4. Сразу мы не можем ответить на вопрос задачи, так как не знаем…

5. Поэтому в первом действии мы узнаем …

6. Во втором действии мы ответим на вопрос задачи. Для этого … ( какое действие выполняем)

2. Алгебраический метод:

Одним из важнейших направлений улучшения качества обучения математике является совершенствование его практической составляющей. К средствам реализации этого направления можно отнести использование текстовых задач и метода уравнений. Действительно, решение текстовых задач с помощью уравнений иллюстрирует применение математики к исследованию явлений реальной действительности, обеспечивает реализацию общих принципов прикладной направленности курса математики. Поэтому необходимо уделять внимание решению текстовых алгебраических задач. Схема работы над задачей:1 этап – анализ и запись условия задачи. Выполнение чертежа, если он необходим.

Содержание данного этапа включает:

Установление объекта наблюдения (исследования);

Выделение процессов, подлежащих рассмотрению;

Выявление величин, входящих в каждый процесс;

Выяснение функциональной зависимости между величинами и составление формул этой зависимости;

Схематическая запись условия задачи с обозначение неизвестных величин;

2 этап – нахождение плана решения.

Выявление основания для составления уравнения или системы уравнений;

Составление уравнения или системы уравнений;

3 этап – осуществление плана решения задачи.

Решение уравнения или системы;

Исследование корней уравнения (системы) с целью установления решений задачи. Проверка расчетов и обоснований;

4 этап – анализ решения задачи.Комментирование решения задачи. Возвращение к решению задачи (ретроспективный подход) с целью уточнения идей и методов решения задачи, упрощение расчетов. Поиск более рациональных приёмов решения задачи.

Пример № 1.На середине пути между станциями А и В поезд был задержан на 10 минут. Чтобы прибыть вВ по расписанию, машинисту пришлось первоначальную скорость поезда увеличить на 12 км/ч. Найти первоначальную скорость поезда, если известно, что расстояние между А и В равно 120 км. 1 – Пусть Х км/ч — первоначальная скорость поезда (умение выделять величины и обозначать их буквами).2 – Найдем зависимость между зафиксированной величиной и другими, участвующими в задаче (умение формулировать зависимости между величинами и выражать посредством букв).ч – время прохождения поездом пути от А до середины;(х + 12) км/ч – скорость поезда от середины пути до В;ч – время прохождения второго участка пути; 3 – По условию задачи поезд прошел вторую часть пути на ч меньше, чем предполагалось по расписанию. Время прохождения поезда по расписанию от середины до конца пути — 60 км/ч, поезд из-за стоянки ч должен был увеличить первоначальную скорость на 12 км/ч , чтобы прибыть по расписанию, т.е. время, затраченное им на втором участке пути, равно ( + ) ч (умение выражать одну и ту же зависимость разными способами, умение составлять уравниваемые выражения). 4 – Составляем уравнениеРешив данное уравнение, получаем: х1 = 60, х2 = — 72. Условию задачи, отвечает х = 60. Таким образом первоначальная скорость поезда – 60 км/ч. (умение интерпретировать результат решения задачи на языке данной задачи).5 – Заметим, что словесная формулировка условия задачи довольно громоздка. В таких случаях осуществления анализа может помочь рисунок.На рисунок вынесены величины, содержащиеся в условии задачи (умение использовать графические модели условия задачи, осуществлять переход от одной модели к другой).

Памятка для лучшего усвоения решения задач с помощью уравнений.

Тщательно изучи условие задачи, если надо, сделай чертёж.

Выясни, о каких величинах идет речь в задаче.

Выбери любую из этих величин для правой части уравнения.

Установи, каким действием и над какими величинами её можно получить.

Выясни, какие из них известны, какие нет. Введи обозначение переменной.

Источник

Способы решения текстовых задач

Статья по теме «Способы решения текстовых задач».

Просмотр содержимого документа
«Способы решения текстовых задач»

СПОСОБЫ РЕШЕНИЯ ТЕКСТОВЫХ ЗАДАЧ

Решить задачу в широком смысле — значит раскрыть связи между данными и искомым, заданные условием задачи, на основе чего выбрать, а затем выполнить арифметические действия и дать ответ на вопрос задачи (М.А. Бантова) [2, с. 179].

В методической литературе можно встретить различные классификации способов решения задач. Остановимся на классификации, которую предлагает нам Л.П. Стойлова. Она выделяет следующие способы решения задач [16; с. 46-49]:

Арифметический. Результат решения задачи находится путем выполнения арифметических действий.

Алгебраический. Ответ находится путем составления и решения уравнения.

Читайте также:  Чебуреки готовые замороженные способ приготовления

Графический. Позволяет найти ответ без выполнения арифметических действий, опираясь только на чертеж.

Практический (предметный). Ответ находится с помощью непосредственных действий с предметами.

Рассмотрим различные способы решения текстовых задач на конкретной задаче:

«Девять апельсинов разложили по 3 на несколько тарелок. Сколько понадобилось тарелок?»

Арифметический способ. Задачу можно решить, записав равенство: 8:2=4.

Алгебраический способ. Рассуждаем: «Число тарелок неизвестно, обозначим их буквой x. На каждой тарелке 3 апельсина, значит, число всех апельсинов – 3·x. Так как в условии известно, что число всех апельсинов 9, можно записать уравнение: 3·x=9, x=9:3, x=3.

Графический способ. Эту задачу можно решить, не имея никакого представления об арифметических действиях.

Изобразим каждый апельсин отрезком:

Практический способ. Решить задачу этим способом, также как и графическим, можно, не выполняя никаких арифметических действий, а только опираясь на жизненный опыт и владея счетом до 9. Для этого можно взять 9 апельсинов, положить 3 на одну тарелку, затем 3 на другую и т.д. Затем, посчитав количество тарелок, можно ответить на поставленный вопрос.

Н.Б. Истомина же в своей работе, помимо перечисленных способов решения, задачи выделяет следующие [16; с. 202-203]:

Схематическое моделирование, в отличие от графического способа решения, означает лишь моделирование только связи и отношения между данными и искомыми. Эти отношения не всегда целесообразно представлять в виде символической модели (равенство, выражение). Моделирование текста задачи в виде схемы также иногда помогает найти ответ на вопрос задачи.

Рассмотрим это на конкретном примере: «В двух автобусах ехали пассажиры, по 20 человек в каждом. На одной остановке из первого автобуса вышло несколько человек, а из второго автобуса вышло столько, сколько осталось в первом. Сколько всего пассажиров осталось в двух автобусах?

В этом случае схема является и способом и формой записи решения задачи.

Ответ: 20 человек осталось в двух автобусах.

Комбинированный способ решения задачи – это способ, при котором ответ на вопрос задачи находится путем как бы сочетания нескольких способов решения. Например, при решении задачи «Сколько машин было на стоянке, если после того как из нее выехало 18 машин, осталось в три раза меньше, чем было?» мы одновременно используем схему и арифметические равенства, так как решение этой задачи только арифметическим способом очень сложно для ребенка. В этом случае запись решения будет иметь такой вид:

Ответ: 27 машин было в гараже.

В начальных классах часто используется разные формы записи решения задач: по действиям, по действия с пояснением, с вопросами, выражением.

Но также не следует путать такие понятия как:

решение задачи различными способами;

различные формы записи арифметического способа решения

решение задачи различными арифметическими способами.

В третьем случае речь идет о возможности установления различных связей между искомыми и данными, о выборе других действий, последовательности действий для нахождения ответа на поставленный вопрос [6; с.201].

ОСОБЕННОСТИ ОБУЧЕНИЯ МЛАДШИХ ШКОЛЬНИКОВ РЕШЕНИЮ СОСТАВНЫХ ЗАДАЧ

Особое место в начальном курсе математики занимают составные задачи. Составная задача включает в себя несколько простых задач, связанных так, что искомое одной простой задачи служит данным для другой. Решение составной задачи сводится к расчленению ее на ряд простых и последовательному их решению. Следовательно, для того, что бы решить составную задачу, надо установить ряд связей между данными и искомым, в соответствии с которым выбрать и выполнить арифметические действия. [2; с. 223]

Например, задача «В классе было 12 девочек, а мальчиков на 2 больше. Сколько детей было в классе?» содержит две простые: «В классе было 12 девочек, а мальчиков на 2 больше. Сколько мальчиков было в классе?» и ««В классе было 12 девочек, а 14 мальчиков. Сколько детей было в классе?» Число, которое являлось искомым в первой задаче (число мальчиков), стало данным для второй (14мальчиков). Последовательное решение этих задач – решение составной задачи.

В отличие от решения простой задачи, в решении составной мы устанавливаем не одну связь, а несколько, в соответствии с которыми выбираются арифметические действия. Это вызывает у ряда детей затруднения. Поэтому необходимо проводить специальную работу по ознакомлению с составной задачей, формировать умения решать составные задачи.

Подготовительная работа помогает уяснить учащимся основное отличие составной задачи от простой – ее нельзя решить сразу, то есть одним действием, нужно вычленить простые задачи, установить связи между данными и искомым. Изучение опыта учителей-практиков базовой школы, а также опыта, представленного в различных информационных источниках, позволяет выделить следующие виды упражнений:

Решение простых задач с недостающими данными.

Например, «В музей поехали мальчики и девочки. Сколько детей поехало в музей?»

После прочтение таких задач учитель спрашивает, можно ли узнать, сколько детей поехало в музей, и почему нельзя. Затем дети подбирают числа и решают задачу. Выполняя такие упражнения, учащиеся понимают, что не всегда можно сразу ответить на вопрос задачи, так как может не хватать числовых данных, их надо получить. [2; с. 223-224]

Читайте также:  Способы ремонта крыш гаража

Решение пар простых задач, в которых числа, полученные в ответе на вопрос первой задачи, является данным во второй задаче, например:

«У Маши было 3 кролика, а у Даши на 2 кролика больше. Сколько кроликов у Даши?»

У Маши было 3 кролика, а у Даши 5. Сколько кроликов было у девочек?»

Учитель, говорит, что данные задачи можно заменить одной: «У Маши было 3 кролика, а у Даши на 2 кролика больше. Сколько кроликов было у девочек?». В дальнейшем дети самостоятельно будут заменять пары подобных задач. [2; с. 224]

Постановка вопроса к данному условию. Учитель говорит условия, а дети говорят, какой вопрос можно поставить к данному условию. [2; с. 224]

Выработка умений решать простые задачи, входящие в составную. Необходимым для решения составной задачи является умение решать простые задачи, входящие в составную. Поэтому, до введения составных задач надо формировать умение решать соответствующие простые задачи. [2, с. 224]

Для знакомства с составной задачей специально отводится в I классе 2-3 урока, на которых большое внимание уделяется установлению связей между данными и искомым, составлению плана решения, записи решения.

Первыми нужно включать задачи, при решении которых надо выполнить два различных арифметических действия: сложение и вычитание, а содержание должно позволять иллюстрировать их.

Существует два мнения по поводу того, задачи какой структуры ввести первыми [2, с. 225]:

Задачи в два действия, включающих простые задачи на нахождение суммы и остатка. Например: «Маша купила 5 тетрадей в линейку и 3 тетради в клетку; 4 тетради она отдала сестре. Сколько тетрадей осталось у Маши?»;

Задачи в два действия, включающие простые задачи на уменьшение числа на несколько единиц и на нахождение суммы. Например: «У Пети 7 яблок, а у Васи на 4 яблока меньше. Сколько яблок у мальчиков?».

Первая задача, в отличие от второй, явно отличается от простой задачи, так как содержит три числа, то есть обе простые задачи как бы лежат на поверхности. Это приводит учащихся к существенному признаку составной задачи – ее нельзя решить сразу, выполнив одного действие, содержание задачи помогает правильному установлению связей, детям легче составить выражение. Поэтому лучше начинать с решения составных задач именно такой структуры, а через 2-3 урока можно будет вводить задачи, в условии которой даны два числа, включающие такие простые: на уменьшение числа на несколько единиц, на нахождение суммы.

В период ознакомления с составными задачами важно добиться различения детьми простых и составных задач. Для этого нужно включать составные задачи в противопоставлении с простыми, выясняя, почему одна задача решается в два действия, а другая в одно. Полезно включать творческие задания, например, преобразовать простые задачи в составные и наоборот. Также вместе с решением готовых задач надо включать упражнения на составление задач, аналогичных решенной, на составление задач по данному решению, по краткой записи и др. [2; с. 226]

На протяжении начальной школы решаются составные задачи, которые связываются с изучаемым материалом, например, в I классе изучаются действия сложения и вычитания и соответственно включаются составные задачи, решаемые этими действиями. По мере продвижения учащихся задачи усложняются либо по линии включения новых связей, либо по увеличению числа выполняемых действий.

Организация деятельности детей по обучению решению каждого нового типа составных задач ведется в соответствии с основными ступенями [2; с. 228]:

Подготовка к решению задач рассматриваемого вида.

Знакомство с решением задач рассматриваемого вида.

Формирование умения решать задачи рассматриваемого вида.

В связи с работой над задачами важно научить учащихся общим приемам работы над задачей: научить самостоятельно анализировать задачу, устанавливать связи, использовать при этом иллюстрации, составлять план решения, выполнять решение, проверять правильность решения.

Для формирования умения решать задачи мы в своей работе использовали памятки по решению задач, с помощью которых учащиеся приобретают умение работать над задачей именно так, как предписывается в алгоритме. [Приложение 3]

Чтобы такая работа действительно помогла учащимся овладеть умением самостоятельно решать задачи, надо предусмотреть определенные этапы:

I этап – усвоение сути каждого этапа алгоритма.

II этап – знакомство с этапами алгоритма и формирование умения ими пользоваться.

III этап – усвоение алгоритма и формирование умения самостоятельно им пользоваться.

IV этап – выработка умения работы над задачей в соответствии с алгоритмом. На этом этапе памятки не нужны детям, так как весь алгоритм усвоен ими в той мере, что учащиеся руководствуются ими, ведя рассуждение про себя и очень быстро.

Формируя метод работы над задачей, учитель должен иметь в виду то, что не все дети одновременно овладевают этим методом, поэтому не следует запрещать пользоваться памятками детям, которые еще не овладели общим методом. Но также нельзя их специально разучивать – они должны быть усвоены непроизвольно, в результате многократного их выполнения.

Использование памяток формирует более полноценное и быстрое умение решать задачи не только у сильных, но и у слабых учеников.

Источник

Оцените статью
Разные способы