Методы решения неравенств при подготовке к ЕГЭ
Методы решения неравенств при подготовке к ЕГЭ
Решить неравенство значит найти множество всех решений неравенства или доказать, что оно решений не имеет. При решении неравенств мы пользуемся равносильными преобразованиями в рамках ОДЗ. С помощью равносильных преобразований мы сводим неравенство к рациональному. Основным методом решения рациональных неравенств является метод интервалов.
Рассмотрим решение задания 13 одного из вариантов ЕГЭ нашего региона.
Задание одного из вариантов было другого типа
Такие неравенства эффективнее решать методом рациональных замен.
Монотонность – ключ к замене.
Выражение при
(
— возрастающая функция) имеет тот же знак, что и
и противоположный, если
(
— убывающая функция)
Оба варианта можно объединить в один , имеющий тот же знак, что и исходное выражение
.
Решить неравенство :
Решение. Заменим неравенство равносильной системой, где учитывается область определения логарифмической функции.
,
Решить неравенство :
Решение.
Выражение и
имеют один знак.
Заменим исходное неравенство равносильной системой, где учитывается область определения логарифмической функции.
.
Ответ:
Полезная таблица замены показательных и логарифмических неравенств на равносильные
Источник
Задание 14. Неравенства — профильный ЕГЭ по математике
Задание 14 Профильного ЕГЭ по математике можно считать границей между «неплохо сдал ЕГЭ» и «поступил в вуз с профильной математикой». Здесь не обойтись без отличного знания алгебры. Потому что встретиться вам может любое неравенство: показательное, логарифмическое, комбинированное (например, логарифмы и тригонометрия). И еще бывают неравенства с модулем и иррациональные неравенства. Некоторые из них мы разберем в этой статье.
Хотите получить на Профильном ЕГЭ не менее 70 баллов? Учитесь решать неравенства!
Темы для повторения:
Разберем неравенства разных типов из вариантов ЕГЭ по математике.
Дробно-рациональные неравенства
1. Решите неравенство:
Решим неравенство относительно t методом интервалов:
Вернемся к переменной x:
Показательные неравенства
2. Решите неравенство
Сделаем замену Получим:
Умножим неравенство на
Дискриминант квадратного уравнения
Значит, корни этого уравнения:
Разложим квадратный трехчлен на множители.
. Вернемся к переменной x.
Внимание. Сначала решаем неравенство относительно переменной t. Только после этого возвращаемся к переменной x. Запомнили?
Следующая задача — с секретом. Да, такие тоже встречаются в вариантах ЕГЭ,
3. Решите неравенство
Сделаем замену Получим:
Вернемся к переменной
Первое неравенство решим легко: С неравенством тоже все просто. Но что делать с неравенством ? Ведь Представляете, как трудно будет выразить х?
Оценим Для этого рассмотрим функцию
Сначала оценим показатель степени. Пусть Это парабола с ветвями вниз, и наибольшее значение этой функции достигается в вершине параболы, при х = 1. При этом
Мы получили, что
Тогда , и это значит, что Значение не достигается ни при каких х.
Логарифмические неравенства
4. Решите неравенство
Запишем решение как цепочку равносильных переходов. Лучше всего оформлять решение неравенства именно так.
Следующее неравенство — комбинированное. И логарифмы, и тригонометрия!
5. Решите неравенство
А вот и метод замены множителя (рационализации). Смотрите, как он применяется. А на ЕГЭ не забудьте доказать формулы, по которым мы заменяем логарифмический множитель на алгебраический.
6. Решите неравенство:
Мы объединили в систему и область допустимых значений, и само неравенство. Применим формулу логарифма частного, учитывая, что . Используем также условия
Обратите внимание, как мы применили формулу для логарифма степени. Строго говоря,
Согласно методу замены множителя, выражение заменим на
Решить ее легко.
Разберем какое-нибудь нестандартное неравенство. Такое, что не решается обычными способами.
7. Решите неравенство:
Привести обе части к одному основанию не получается. Ищем другой способ.
Заметим, что при x = 9 оба слагаемых равны 2 и их сумма равна 4.
Функции и — монотонно возрастающие, следовательно, их сумма также является монотонно возрастающей функцией и каждое свое значение принимает только один раз.
Поскольку при x=9 значение монотонно возрастающей функции равно 4, при значения этой функции меньше 4. Конечно, при этом , то есть x принадлежит ОДЗ.
Источник
Решение неравенств: основные ошибки и полезные лайфхаки
Вы умеете решать неравенства? Уверены?
Вспомним для начала, что вообще можно делать с неравенствами и чего с ними делать нельзя.
При решении неравенств мы можем:
1. Умножать обе части неравенства на число или выражение, не равное нулю.
При умножении обеих частей неравенства на положительное число знак неравенства сохраняется.
При умножении обеих частей неравенства на отрицательное число знак неравенства меняется на противоположный.
2. Можем возводить обе части неравенства в квадрат при условии, что они неотрицательны
3. Имея дело с показательным или логарифмическим неравенством, мы можем «отбрасывать» основания или логарифмы. Если основание степени или логарифма больше единицы – знак неравенства будет тот же. Если основание степени или логарифма положительно и меньше единицы – знак неравенства меняется на противоположный.
Конечно, мы не просто «отбрасываем» основания степеней или логарифмы. Мы пользуемся свойствами монотонности соответствующих функций. Если основание степени больше единицы, показательная функция монотонно возрастает. Если основание положительно и меньше единицы – показательная функция монотонно убывает. Аналогично ведет себя и логарифмическая функция.
4. При решении показательных или логарифмических неравенств применяется метод рационализации (замены множителя).
5. Общее правило. Если неравенство можно хоть как-то упростить – это необходимо сделать! Иначе его решение может занять восемь страниц и два часа времени.
Чего нельзя делать при решении неравенств? Вот 7 ловушек, в которые часто попадают абитуриенты.
1. Нельзя умножать (или делить) неравенство на выражение, знака которого мы не знаем.
Например, в неравенстве > нельзя поделить левую и правую часть на . Правильный способ: перенести всё в левую часть неравенства, разложить на множители и решить неравенство методом интервалов.
Получаем, что . «Сократив» на , который может быть отрицательным, мы не получили бы правильного ответа.
2. Извлекать из неравенства корень тоже нельзя. Такого действия просто нет.
Как, например, решить неравенство
Перенесем все в левую часть неравенства, чтобы в правой остался ноль.
Разложим левую часть на множители.
Решим неравенство, пользуясь свойствами квадратичной функции , и запишем ответ: .
Запомним: ответы типа « > » абсурдны.
Как решать неравенство > 0? Это типичная «ловушка для абитуриентов». Так и хочется сказать, что > 0 (то есть извлечь корень из неравенства). Но этого делать нельзя. Выражение положительно при всех , кроме нуля. Правильное решение неравенства: .
4. Возводить обе части неравенства в квадрат можно только если они неотрицательны.
5. Помним о том, в каких случаях знак показательного или логарифмического неравенства меняется, а в каких – остается тем же. «Отбрасывая» логарифмы, делаем это грамотно.
6. Если в неравенстве есть дроби, корни четной степени или логарифмы – там обязательно будет область допустимых значений.
7. Сложная тем для старшеклассников – задачи с модулем. Проверьте, умеете ли вы их решать.
При решении неравенств большое значение имеет правильное оформление. Рекомендуется оформлять решение как цепочку равносильных переходов: от исходного неравенства к равносильному ему неравенству или системе.
Обратите внимание на приемы, позволяющие решать неравенства легко, быстро и без лишних вычислений.
А теперь – полезный лайфхак для решения дробно-рациональных неравенств.
Что будет, если действовать «по шаблону» — то есть собрать всё в левой части неравенства и привести к одному знаменателю? — Будет много вычислений и выражение четвертой степени.
Может быть, сделаем проще? Представим дробь в виде суммы дробей и .
Продолжаем упрощать левую часть:
Теперь можно и привести дроби к одному знаменателю.
Все, больше ничего не пишем. Решаем неравенство методом интервалов.
Источник
Решение неравенств
Решите неравенство \[x+10
Перенесем слагаемые в левую часть: \[-3x^2+x+10 Разложим на множители выражение \(-3x^2+x+10\) : \[-3x^2+x+10=0 \quad \Rightarrow \quad x_1=2\quad\text<и>\quad x_2=-\dfrac53\] Следовательно, \(-3x^2+x+10=-3(x-2)\left(x-\frac53\right)=-(x-2)(3x+5)\) .
Тогда неравенство примет вид \[-(x-2)(3x+5) 0\] Решим его методом интервалов:
Таким образом, подходят \(x\in \left(-\infty;-\frac53\right)\cup(2;+\infty)\) .
Решите неравенство \[x^2+34x+289>0\]
Заметим, что по формуле квадрата суммы \(x^2+34x+289=(x+17)^2\) , следовательно, неравенство принимает вид: \[(x+17)^2>0\] Решим его методом интервалов:
Таким образом, нам подходят \(x\in(-\infty;-17)\cup(-17;+\infty)\) .
Решите неравенство \[x^2-4x+4\leqslant 0\]
Заметим, что по формуле квадрата разности \(x^2-4x+4=(x-2)^2\) , следовательно, неравенство принимает вид: \[(x-2)^2\leqslant 0\] Решим его методом интервалов:
Таким образом, нам подходят \(x\in\<2\>\) .
Решите неравенство \[x^2+3x+3\geqslant 0\]
Разложим на множители выражение \(x^2+3x+3\) , для этого решим уравнение \(x^2+3x+3=0\) . Оно имеет отрицательный дискриминант, следовательно, не разлагается на множители и принимает значения одного знака: либо положительно, либо отрицательно при всех \(x\) . Проверить его знак можно, подставив вместо \(x\) любое число, например, \(x=0\) : получим \(3\) , следовательно, выражение всегда \(>0\) .
Таким образом, нам подходят \(x\in \mathbb
Решим исходное неравенство методом интервалов. Для этого найдём нули числителя и знаменателя.
1) Нули числителя находятся из уравнения \[(x — 1)(x + 2) = 0\] Произведение выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл, тогда нули числителя: \[x = 1,\qquad\qquad x = -2\]
2) Найдём нули знаменателя: \[(x — 3)(x + 4) = 0\qquad\Leftrightarrow\qquad \left[ \begin
По методу интервалов:
откуда \[x\in(-4; -2]\cup[1; 3)\,.\] В этом ответе ОДЗ уже учтено (мы учли его, когда выкололи на числовой прямой нули знаменателя).
Решим исходное неравенство методом интервалов. Для этого найдём нули числителя и знаменателя.
1) Нули числителя находятся из уравнения \[(x + 1)(x — 2) = 0\] Произведение выражений равно нулю в том и только том случае, когда хотя бы одно из них равно нулю и все они не теряют смысл, тогда нули числителя: \[x = -1,\qquad\qquad x = 2\]
2) Найдём нули знаменателя: \[(x + 3)(x^2 + 4) = 0\] так как \(x^2\geqslant 0\) , то \(x^2 + 4\geqslant 4\) , следовательно, нули знаменателя: \[x = -3\]
По методу интервалов:
откуда \[x\in(-\infty; -3)\cup[-1; 2]\,.\] В этом ответе ОДЗ уже учтено (мы учли его, когда выкололи на числовой прямой нули знаменателя).
Источник