- Чугун: процесс производства, классификация и маркировка
- Определение
- История
- Процесс производства чугуна
- Технологический процесс проходит в несколько этапов
- Процессы протекающие в печи
- Параметры чугуна
- Классификация чугунов
- Маркировка
- Области использования
- Интересные факты
- Заключение
- Альтернативные технологии для производства чугуна
- Топливо для плавки
- Компоненты, необходимые для получения чугуна.
- Руды для плавки
- Процесс производства
- Необходимое оборудование
- Сырье
- Совокупность веществ
- Расчет
- Технологии
- Подготовка руды к плавке
- Железная руда — разновидности и свойства.
- Технология производства
- Еще о доменном процессе
- Основные марки чугуна
- Производство чугуна
- Похожие статьи:
- Влияние различных соединений на свойства
- Про науглероживание железа
- Немного о литейном производстве
- Еще кое-что интересное
- Флюсы, применяемые при плавке чугуна.
Чугун: процесс производства, классификация и маркировка
В век бурного развития металлургической промышленности и производства чугун играет ключевую роль. Давайте разберемся, что это за материал, как он появился, как производится, какими свойствами обладает, какие виды классификации чугуна существуют, и каким образом он применяется в различных областях промышленности.
Определение
Чугуном называется смесь 2,14 % углерода с железом, полученная при термическом нагревании в доменных печах до 1200 градусов Цельсия. С помощью шестого элемента таблицы Менделеева железо в форме сплава приобретает увеличенную твердость, теряя пластичность и ковкость, делая данный материал хрупким.
Помимо углерода, для получения особых параметров, в металлическую матрицу, добавляются такие элементы, как Si, Mg, P, S. Также широко применяются легирующие агенты – Cr, V, Ni, Al.
История
Технология изготовления чугуна пришла к нам из Китая, где «ходили» чугунные деньги еще в 10 веке нашей эры. Потомки монголов уже в 13 веке готовили котлы из этого сплава. На полях сражений в Столетней войне впервые применялись артиллерийские орудия и боеприпасы, отлитые из данного твердого раствора. В России его широкое применение в изготовлении оружия было налажено в 16 веке после появления доменной печи. В связи с этим, в 1701 году был построен Уральский чугунолитейный завод, который стал началом народного промысла, получившего название «Каслинское литье».
Начиная с 18 века Великобритания занимает пальму первенства по производству чугуна в мире. Благодаря новой технологии Уилкинсона, к середине 19 века в этой стране производилось половина всего мирового объема.
Технология изготовления не стояла на месте, что позволило Соединенным Штатам в конце 19 века вырваться вперед.
В то время из этого сплава начали изготавливать рельсы, водопроводные и канализационные трубы, камины, и такие сложные инженерно-строительные сооружения, как мосты.
Процесс производства чугуна
Получение чугуна проводят в доменных печах. Этот процесс является достаточно энергоёмким и затратным производством. В качестве сырья используют 4 основных группы руд:
- Гематитовый железняк, состоящий из ангидридного оксида железа, держит 70% (Fe) и 30% (O);
- Магнетитовый железняк, содержит 72,4% (Fe), и 27,6% (O);
- Бурый железняк, содержит 59,8% элементарного железа;
- Сидеритовый железняк, содержит 48,3% (Fe).
Технологический процесс проходит в несколько этапов
Сначала, в процессе подготовки, измельчают железную руду с содержанием оксидов железа (FeO и Fe2O3) не менее 40% от общей массы. Затем путем дробления, грохочения, усреднения, промывки, обогащения и обжига, избавляются от неметаллических примесей – S, P, As, и поднимают массовую долю основного металла в руде.
По окончанию, подготовительного этапа, загружают все компоненты в печь.
Доменная печь представляет собой непрерывно действующее металлургическое оборудование в виде шахты, массой 30 тысяч тонн. Доменная печь состоит из 5 элементов: верхней части в форме цилиндра – колошника, широкой конической части – шахты, широкой части – распары, зауженной части – заплечиков и нижней части – горна. Загрузка всех компонентов производится сверху через колошник, а готовый продукт и шлак раздельно выходят снизу из горна.
Одновременно с рудой в домну помещают коксующиеся угли, выполняющие функцию топлива. В процессе термического разложения углей образуются соединения углерода, участвующие в качестве восстановительного агента. Для ускорения процесса высвобождения металла из руды добавляется флюсы. Обычно это горные породы, содержащий оксиды кальция и магния.
После окончания этапа загрузки начинается процесс выплавки, когда загруженные компоненты превращаются в сплав, шлак и газ. Физико-химические реакции, протекающие при этом можно охарактеризовать как восстановительно-окислительные, так как происходит восстановление окислов железа и окисление восстановительного агента.
Процессы протекающие в печи
Процессы, протекающие в доменной печи можно описать следующими химическими уравнениями:
При нагревании кокса происходит выделение элементарного углерода, который с кислородом образует углекислый газ.
С + О2 = СО2 + выделение энергии
CO2 при нагревании дальше окисляется до оксида углерода, и восстанавливает элементарное железо из его оксидов в руде.
Fe2O3 + 3 CO = 2Fe + 3 CO2
После реакции восстановления, металл насыщается углеродом, а при достижении 1150-1200°С стекает уже в форме металлического компаунда в горн. Из остатков пустой руды и флюсов образуют отход — шлак, который непрерывно удаляется.
Параметры чугуна
Плотность — 7,2 г/см3. Температура плавления составляет 1200 °С. Хрупкость и малая пластичность сплава обусловлена следующими факторами:
- Увеличение длины связи, между атомами Fe, из-за повышенного содержания углерода;
- Неполное внедрение атомов углерода в структуру матрицы железа в связи с низкой, по сравнению со сталью, температурой плавления.
Именно по этим причинам, данный твердый металлический раствор нашел широкое применение в производстве деталей, обладающих высокой прочностью. Однако, он не подходит для продукции, подвергающейся нагрузкам, значения которых быстро изменяются во времени.
Классификация чугунов
Существуют несколько видов классификации чугунов.
- По содержанию элементарного углерода делятся на:
- доэвтектический (2,14-4,3 %);
- эвтектический (4,3%);
- заэвтектический (4,3-6,67%).
- По видам углерода, и цвету излома:
- Белый (С > 3%, в форме карбида). Его применение ограничено производством изделий, не подвергающихся большим нагрузкам, из-за значительной хрупкости. Но при добавлении легирующих присадок, содержащих хром, никель, ванадий, алюминий повышаются его эксплуатационные параметры;
- Серый (С -2,5%, в форме перлита) обладает хорошей износостойкостью и понижает силу трения. Применяется при изготовлении деталей промышленного оборудования, подвергающихся циклическим нагрузкам. При добавлении специальных присадок, имеющих в составе Mo, Ni, Cr, B, Cb, Sb улучшается стойкость при использовании в агрессивных средах;
- Половинчатый (С – 3,5-4,2%, в форме графита и карбида и наличие следовых количеств цементита и ледебурита). Такой вид нашел свое применение при производстве изделий, подвергающихся постоянному трению.
- По физическим параметрам, согласно ГОСТ 1412-54 и 1215-59, различают марки чугуна:
- Ковкий (КЧ), представляет собой его белую разновидность после специального обжига. При этом доля углерода находится на уровне 3,5%, и он представлен в форме Fe2O3 или зернистого перлита, с графитовыми включениями. В качестве присадок для повышения устойчивости к трению обычно добавляют Mg, Te, B. Следует отметить, данная марка никогда не подвергается ковке, в прямом смысле этого слова;
- Высокопрочный (ВЧ), образуется путем вкрапления в металлическую решетку шарообразных включений углерода и введении в состав магния, кальция, селена, иттрия. Характеризуется улучшенными механическими, теплопроводными пластическими параметрами.
- По специфическим свойствам:
- Износостойкий;
- Антифрикционный;
- Коррозионностойкий;
- Жаростойкий;
- Немагнитный.
- По шкале твердости Бринелля:
- Мягкий (НВ менее 149);
- Умеренной твердости (НВ 149-197);
- Улучшенной твердости (НВ 197-269);
- Твердый (НВ более 269).
- По значению временного сопротивления при растяжении:
- Обыкновенной прочности (менее 20 кгс/мм2);
- Улучшенной прочности (20-38 кгс/мм2);
- Максимальной прочности (более 38 кгс/мм2).
- По магнитным характеристикам:
- Ферромагнитный — обладающий магнитными свойствами, из-за высокого содержания в металлической матрице феррита и цементита;
- Паромагнитный – обладающий малой магнитной проницаемостью, содержащий в своем составе присадки из хрома, меди и алюминия.
Маркировка
По Гостам, все существующие марки обозначаются 2 буквами и 2 числами, при этом числа отражают значения временного сопротивления (кгс/мм2) и относительного удлинения (%). К примеру, цифры в марке КЧ-30-6, показывают временное сопротивление — 30 кгс/мм2 и относительное удлинение — 6 %.
Путем введения в состав специальных добавок, модифицируют состав сплава. Тогда к названию марки прибавляется буква М.
Области использования
Применение различных марок чугуна зависит от металлургического компаунда и его эксплуатационных характеристик.
Белый вид используется в производстве нагревательных элементов и бытовой сантехники (ванн, раковин), а также является сырьем для получения ковких разновидностей твердых растворов.
Серый — входит в состав различных элементов двигателей для машиностроительной отрасли.
Ковкий – при изготовлении тормозных колодок и деталей для промышленного измельчительного оборудования. Кроме того, он имеет широкое применение в текстильной промышленности при отливке запасных частей сложной формы для оборудования. Применяется КЧ при изготовлении кухонной посуды, элементов интерьера, уличных фонарей, перил для лестниц.
Высокопрочный сорт применяется при производстве труб, фитингов для водоснабжения, канализации, нефтедобывающего производства. Кроме того, из него делают секционные радиаторы, эксплуатируемые в системах центрального отопления жилых домов и административных зданий.
Из ферромагнитного типа изготавливают электрощиты и другие составляющие электротехнического оборудования, а немагнитный его тип наоборот используется в качестве электроизолирующего материала.
В огромном количестве чугун используется как сырье на сталелитейных предприятиях.
Интересные факты
По мнению профессора Мариенбаха, свое название чугун получил от китайского слова – «чжугун», что в переводе означает «литейщик».
Чугунная посуда издавна используется по всему миру и очень удобна для приготовления различных видов пищи.
Неотъемлемым атрибутом русских народных сказок является печь, в которой в чугунке – сосуде определенной формы и отлитой из данного сплава, герои варили главное блюдо – картошку в мундире.
Самые лучшие блины получаются на чугунной сковородке.
До появления электрических утюгов, хозяйки использовали тяжелые чугунные утюги, с идеально гладкой подошвой нагревая её до красна, над источником огня.
Следующим этапом, были угольные чугунные утюги по своей конструкции напоминающие маленькие печки. Для их разогрева внутрь помещали березовый уголь. Такой утюг даже имел трубу для получения необходимой тяги.
Известные нам с детства канализационные люки для смотровых колодцев имели круглую форму, отливались из чугуна и были впервые изготовлены сто пятьдесят лет назад.
Производство чугуна во всем мире в 2015 году составило более 898 млн. тонн, что на 3% меньше чем в 2008 году.
Заключение
Подробно рассмотрев те вопросы, которые были поставлены выше, можно заключить:
- Чугун – это сплав железа с углеродом с добавлением специальных модификаторов;
- Для его производства добываются различные типы руд, подвергающиеся предварительной подготовке и обогащению;
- Выплавка происходит в доменной печи, которая непрерывно работает и представляет собой целый металлургический комплекс оборудования;
- В зависимости от количества и форм растворенного углерода в металлической матрице, все сплавы делятся на различные виды и обладают различными свойствами;
- Применение различных марок чугуна напрямую зависит от его физико-химических параметров полученного сплава;
- Несмотря на наличие новых типов материалов, кухонная чугунная посуда до сих пор пользуется спросом у многих домохозяек и поваров;
- Старинные угольные чугунные утюги представляли собой маленькую печку и топились углем, что делало процесс глажки очень утомительным и пожароопасным делом;
- Производство чугуна достаточно энергоёмкое и финансово затратное дело, поэтому в настоящее время его объем неизменно сокращается во всем мире, так как на смену приходят другие современные, износостойкие и дешевые в изготовлении композиционные материалы.
Источник
Альтернативные технологии для производства чугуна
В настоящее время основной способ получения чугуна — плавка железных руд в доменных печах. Для плавки необходим ряд сырых материалов, таких как флюсы, железные или марганцовые руды, а также топливо. В качестве топлива используется кокс, который, по сути, является каменным углем. Роль кокса – обеспечить процесс восстановительной энергией и определенным количеством тепла. Давайте рассмотрим производство чугуна более подробно. Так как это сложный и длительный процесс, то его описание займет много времени.
Топливо для плавки
Как было отмечено выше, в качестве топлива используют кокс. Но, помимо этого, допустимо использование мазута, угольной пыли и природного, а также коксового газов. Тем не менее практически всегда в качестве основного горючего применяют именно кокс. Это вещество, которое образуется при удалении летучих газов из угля при температуре от 900 до 1 200 градусов. Сегодня это единственный вид твердого топлива, который сохраняет свою исходную форму во время движения от колошника к горну. В принципе, к этому материалу выдвигаются жесткие требования, которые касаются механической прочности и жесткости, что нужно для восприятия больших нагрузок в нижней части доменной печи. Крайне важно выдерживать фракцию кокса. Слишком мелкие частицы способствуют газопроницаемости шихты, а слишком большие разрушаются и образуют мелкую фракцию. Помимо этого, необходимо соблюдать определенный процент влажности, что нужно для поддержания теплового режима.
Компоненты, необходимые для получения чугуна.
Итак, чугун является химически сложным веществом, поэтому при его выплавке используют различные компоненты, каждый из которых выполняет свою определенную функцию.
В среднем, для производства 1 тонны металла необходимо около 3 тонн (в зависимости от содержания железа) руды, 1,1 тонны кокса, 20 тонн воды, плюс различное количество флюса.
- Основа чугуна — металлическая руда, состоит из различных соединений железа, а также пустых пород. Процентное содержание Fe в руде отличается в зависимости от типа материала, и варьируется от 30 до 70%.
- Флюсы, другое название плавни. Разнообразные породы, добавляемые в руду при плавке. Основной задачей является снижение температурного параметра плавления руды, которое обеспечивает более эффективный вывод шлака. В зависимости от типа пустых пород, применяются разные виды флюсов.
- Процесс выплавки чугуна требует большого количества тепловой энергии, причем температура горения топлива должна соответствовать условиям плавки. В качестве топлива в металлургии в основном применяют коксующиеся угли, термоантрацит, природный газ.
Свойства этих компонентов, для более полного понимания процесса плавки, рассмотрим подробней.
Руды для плавки
В земной коре довольно много железа, однако в чистом виде оно не встречается, его всегда добывают с горными породами в виде различных соединений. Железной рудой можно называть только те породы, из которых с экономической точки зрения выгодно добывать железо посредством плавления в печи. В природе существуют богатые и бедные железные руды. Если говорить с точки зрения металлургической промышленности, то в руде есть ряд полезных добавок, которые необходимы при получении чугуна, – это хром, никель, марганец и другие. Есть и вредные включения: сера, фосфор, медь и т.п. Кроме того, железная руда может делиться на несколько групп в зависимости от минерала:
- красный железняк – 70% железа, 30% кислорода;
- магнитный железняк – 72,4% железа, 27,6% кислорода;
- бурый железняк – до 60% железа;
- шпатовый железняк – до 48,3 % железа.
Логично было бы сделать вывод, что доменное производство чугуна должно предусматривать использование руды из второй группы. Но самой распространенной является первая, поэтому ее чаще и применяют.
Процесс производства
Вариант с запуском доменного производства требует вложений огромных сумм, исчисляемых в миллиардах рублей. Если речь о малом бизнесе, используется переплавка чугуна в вагранке. Конструкция уступает домне в размерах, проще обслуживается. В доменных печах для изготовления чугуна используют руду, а в вагранке плавят лом.
Использование вагранки при грамотном подходе приносит хороший доход при сравнительно небольших вложениях. Конструкция представляет собой шахтную печь, как домна. В качестве топлива используется кокс или газ. Высокая температура достигается нагнетанием воздуха в рабочий отсек. Вместо руды загружается лом от чугуна и чушек. Расплавленный металл разливается по формам.
Производство с помощью вагранки проходит так:
- Куски чугуна, кокса, присадок через завалочное окно загружаются в шахту.
- Сгорая, кокс повышает температуру в рабочей зоне до уровня плавления чугуна.
- Расплавленный чугун вытекает через одну летку, а легкий шлак – через другую.
- Газообразные смеси, образовавшиеся в процессе плавки, выводятся через трубу наверх.
Для облегчения заливки габаритных форм и поддержания требуемого химического состава чугуна вагранки оснащаются копильником. Он представляет собой горн для скопления чугуна.
Рабочий цикл вагранки длится от 10 до 20 часов. Далее печь гасится, чтобы отремонтировать внутреннюю облицовку.
В течение часа такая шахтная печь может изготавливать от 0,2 до 25 тонн чугуна. Производительность зависит от диаметра шахты (500 – 2000 мм).
Необходимое оборудование
Основной частью вагранки считается металлический кожух в виде цилиндра. Изготавливается из стали толщиной 6 – 12 мм. Внутренняя поверхность облицована жаропрочным материалом толщиной 200 – 300 мм. Основанием цилиндра становится подовая плита на четырех колоннах. Пространство от подовой плиты до завалочного окна – шахта. Внизу шахты расположен горн с фурмами для подачи кислорода и летками для отвода готового чугуна и шлака. В розжиге задействуется рабочее окно, дрова.
Сырье
Для масштабного производства чугуна используются доменные печи. Сырьем для них выступает железная руда. Это породы, из которых экономически выгодно добывать железо плавлением. В руде есть добавки, полезные для изготовления чугуна – никель, марганец, хром и другие. Помимо полезных, есть и вредные компоненты в виде фосфора, меди, серы и др.
По сравнению с доменной печью, вагранка упрощает процесс поиска и обработки сырья. В ней используется лом, который не сложно собирать при должной организации процесса почти за бесценок. Благодаря этому удается снизить себестоимость, выйти на конкурентный уровень цен.
Совокупность веществ
Если речь о железной руде, она включает рудное вещество и пустую породу. Последняя – это песчаник и глина, кварцит, доломит, известняк. Рудное вещество – карбонаты железа, силикаты и окислы. Процентное содержание разных веществ в руде варьируется, с учетом чего ее относят к богатым и бедным. Первую используют в производстве, вторую отправляют на обогащение.
Тем, кто собирается использовать в производстве доменные печи, следует знать о разновидностях руды:
- бурый железняк. Содержит железо в виде водных окислов (25 – 50%);
- красный железняк или гематит. Содержит железо в виде безводной окиси (45 – 55%);
- магнитный железняк. Железо в виде закиси-окиси (30 – 37%);
- шпатовый железняк или сидерит. Железо представлено углекислой солью.
Расчет
Предварительные подсчеты объема инвестиций для запуска малого бизнеса по литью чугуна в вагранке охватывают основные статьи расходов.
Вагранка, способная выдать от 0,2 до 0,35 т чугуна в час, потребляет за этот период 2 кВт электричества. Можно выливать литейный, модифицированный и рафинированный чугун. За месяц одна вагранка выполнит 22 плавки, каждая – по 5,4 т чугуна. Объем месячного производства – 118 тонн. Стоимость вагранки – 3 млн рублей, включая доставку, установку, обучение персонала.
Аренда производственных помещений, оснастка, закупка экипировки, инструментов – около 300 тыс. рублей.
На изготовление 1 т чугуна в вагранке требуется:
- лом чугуна (0,7 – 0,8 т) – 5,4 тыс. руб.;
- лом стали (0,2 – 0,3 т) – 1,6 тыс. руб.;
- известняк (0,05 т) – 75 руб.;
- ферросилиций (0,025 т) – 500 руб.;
- кокс (0,16 т) – 1,9 тыс. руб.
Итого: на изготовление 1 тонны чугуна требуется закупить сырье на сумму 9495 рублей, на месячную норму (118 т) расходы составят примерно 1 млн 120 тыс. рублей.
При трехсменном графике работы (в каждой смене 4 сотрудника), зарплата рабочих составит 420 тыс. рублей каждый месяц.
Электроэнергия – около 3520 рублей в месяц.
Общие расходы на производство чугуна за месяц составят чуть больше 1,5 млн рублей.
Представив объем вложений, пора переходить к подсчетам прогнозируемой прибыли. Если средняя стоимость 1 т чушкового чугуна равна 25 тыс. рублей, то за месячный объем производства, указанный выше, можно выручить чуть меньше 3 млн рублей. Если вычесть расходы, получится чистая прибыль в размере около 1,4 млн рублей в месяц. При такой доходности начальные инвестиции окупятся с лихвой уже через 3 месяца плодотворной работы.
Технологии
В зависимости от используемого оборудования, технология производства варьируется. Сложнее выглядит процесс изготовления чугуна в доменной печи:
- Подготовка руды. Сырье сортируется по химическому составу и фракциями. Крупные куски дробят, а мелкие частицы и пыль превращают в куски путем спекания. Бедные руды на этом этапе обогащают, удаляя некоторый объем пустой породы, повышая содержание железа.
- Подготовка топлива. Для предотвращения потери тепла мелкие фракции удаляют, подвергая кокс грохочению.
- Производство. В печь помещают кокс, агломерат (спеченную руду с флюсом), снова кокс. Поддерживают температуру внутри добавлением воздуха. Кокс, сгорая в горне, образует углекислый газ. Тот, проходя сквозь кокс, превращается в окись углерода и восстанавливает руду. В процессе железо твердеет, далее перемещается в зону печи с более высокой температурой, где углерод в железе растворяется. Так образуется чугун. Жидкий металл выливается в ковши, оттуда – в специальные сборники или формы.
Производство в вагранке проще за счет отсутствия необходимости подготавливать руду.
Подготовка руды к плавке
Нельзя добыть железную руду из земли и тут же забросить ее в загрузочное устройство доменной печи. Сначала необходимо несколько улучшить технико-экономические показатели, что позволит использовать для получения чугуна относительно бедные руды, которых в земной коре значительно больше. К примеру, увеличение железа в руде всего на 1% приводит к экономии кокса на 2% и к увеличению производительности ДП на 2,5%. На первом этапе руда дробится на фракции, а дальше проходит грохочение. Последнее мероприятие необходимо для разделения железной руды по крупности. Дальше идет усреднение, где выравнивается химический состав. Один из самых важных и сложных этапов – обогащение. Суть процесса заключается в удалении пустых пород с целью увеличения содержания в руде железа. Обычно обогащение проходит в два этапа. Заключительным этапом является окускование, которое нужно для улучшения протекания плавки в доменной печи.
Железная руда — разновидности и свойства.
В природе существует большое разнообразие железных руд, но во многих из них содержание металла очень низкое, что делает нерентабельной ее переплавку. Кроме основных компонентов в состав руды входят и другие примеси, которые могут быть как полезными, так и вредными, ухудшающими свойства получаемого металла. К нежелательным примесям можно отнести примеси серы, которая имеется в руде в виде сульфида. Сера придает выплавленному металлу так называемую красноломкость, хрупкость при прокатке или ковке. Содержание серы в руде не должно превышать 0,15%. Негативное действие оказывает и фосфор, встречающийся в виде фосфатов, его превышенное содержание вызывает хладноломкость (хрупкость в нормальных условиях). Другие примеси оказывают в основном положительное влияние на получаемый металл, но при плавке стоит учитывать их содержание в руде, для того, чтобы получить требуемые качества чугуна. К таким примесям относят ванадий, титан, медь, марганец, хром. В металлургии применяют следующие виды железных руд:
- Магнитный железняк — основное сырье для чугуна, содержание железа достигает 60%, наличие нежелательных примесей минимально. Обладает значительными магнитными свойствами.
- Красный железняк (гематит), содержит безводную окись железа, которой имеется в руде до 66%, фосфор и сера присутствуют в небольших количествах.
- Бурый железняк, руда, содержащая до 55% железа, отличается большим количеством нежелательных примесей.
- Шпатовый железняк, содержит всего около 40% солей железа, что делает его применение ограниченным.
- Также применяются в производстве ферромарганца и зеркального чугуна марганцевые руды.
Технология производства
Доменный процесс – это совокупность механических, физических и химико-физических процессов, которые протекают в функционирующей ДП. Загружаемые флюсы, руды и кокс в процессе плавки превращаются в чугун. С точки зрения химии, это окислительно-восстановительный процесс. По сути, из оксидов восстанавливается железо, а восстановители окисляются. Но процесс принято называть восстановительным, так как конечная цель – получить металл.
Основным агрегатом для реализации процесса плавки служит печь (шахтная). Крайне важно обеспечить встречное движение шихтовых материалов, а также их взаимодействие с газами, которые образуются во время плавки. Для улучшения процесса горения используется дополнительная подача кислорода, природного газа и водяного пара, что в совокупности называется дутьем.
Еще о доменном процессе
Кокс, поступающий непосредственно в горн, имеет температуру порядка 1 500 градусов. В результате в зоне горения образуется смесь газов температурой 2 000 градусов. Он поднимается в верх доменной печи и нагревает опускающиеся к горну материалы. При этом температура газа несколько понижается, примерно до 1700-1600 градусов.
Шихта грузится в колошник порционно. Распространение в ДП происходит слоями. Обычно загружают одну порцию в 5 минут. Перерыв нужен для освобождения места в колошнике. Науглероживание проходит еще в твердом состоянии железа, после температура падает до 1 100 градусов. В этот период заканчивается восстановление железа и начинается окисление кремния, марганца и фосфора. В результате мы имеем науглероженное железо, которое содержит не более 4% углерода. Оно плавится и стекает в горн. Туда же попадает и шлак, но так как удельные массы материалов различные, то они не соединяются. Через чугунную летку выпускают чугун, а через шлаковые летки – шлак. В принципе, это и вся технология производства, описанная вкратце. Сейчас рассмотрим еще один интересный вопрос.
Основные марки чугуна
Чугун – сплав железа с углеродом. Содержание последнего элемента не должно быть меньше 2,14%. Помимо этого, присутствуют и другие элементы, такие как кремний, фосфор, сера и др. Углерод обычно находится или в связанном состоянии (цементит), или же в свободном (графит). Чугун можно поделить на следующие виды:
- Литейный – имеет маркировку Л1-Л6 и ЛР1-ЛР7.
- Передельный чугун – маркируется как П1 и П2. Если материал предназначается для отливок, то это ПЛ1 и ПЛ2. Металл с большим содержанием фосфора обозначается как ПФ1,ПФ2, ПФ3. Помимо этого, есть и высококачественный передельный чугун – ПВК1, ПВК2 и ПВК3.
- Серый – СЧ10, СЧ15, СЧ20,СЧ25, СЧ30 и СЧ35.
- Ковкий чугун – КЧ30-6, ЧК45-7,КЧ65-3 и др. Если после букв стоят цифры, то они обозначают временное усилие на разрыв.
- Легированный чугун, имеющий специальные свойства, обозначается буквой «Ч»;
- Антифрикционный (серый) – АЧС.
Можно говорить о том, что любой вид чугуна имеет свое дальнейшее назначение. К примеру, передельный используется для переделки в сталь и для производства отливок. В это же время марки ПЛ1 и ПЛ2 отправятся в литейный цех, а П1 и П2 будут использованы в сталеплавильном производстве.
Производство чугуна
Производство чугуна. Материалы для плавки чугуна в доменной печи называют шихтой. Шихта состоит из железной руды, которая предварительно подготовляется к плавке, известняка, необходимого для образования шлака, топлива, которым служит металлургический кокс.
Железная руда — основной материал для производства чугуна — представляет собой горные породы сложного состава. Обычно железные руды содержат окислы железа Fe2O3, Fe3O4, а также окислы кремния, марганца, фосфора, серы, кальция, магния и других элементов, которые называют пустой породой, потому что в них нет железа. Чтобы понизить температуру плавления пустой породы и золы, получающейся от сгорания кокса, в доменную печь добавляют известняк СаСО3 — флюс. Пустая порода и зола кокса сплавляются с известняком и образуют шлак.
Рис. 4. Схема доменной печи:
1 — летка для выпуска жидкого чугуна, 2 — шлак, 3 — загрузочное устройство, 4 — железная руда, 5— известняк, 6 — кокс, 7 — капли расплавленного чугуна, 8 — капли расплавленного шлака, 9 — фурмы, 10 — летка для выпуска жидкого шлака, 11 — жидкий чугун
В доменную печь (рис. 4) сверху с помощью устройства 3 загружается определенными порциями шихта. Сначала загружают кокс, затем флюсы и железную руду. В такой последовательности загружается весь объем печи. Для розжига кокса и создания в печи высоких температур, обеспечивающих процесс плавления шихты, по специальным каналам, называемым фурмами 9, вдувают горячий воздух.
Плавление начинается выше фурм, в результате появляются капли расплавленного чугуна 7 и шлака 8. Стекая на днище печи по кускам раскаленного кокса, жидкий чугун 11 и шлак 2 нагреваются до температур 1400… 1450 °С и собираются на подине, которая называется лещадью. Периодически чугун и шлак выпускают из печи через специальные отверстия — летки 1 и 10.
При плавке в доменной печи железо восстанавливается из руды углеродом кокса и науглероживается. Вместе с железом восстанавливается часть окислов пустой породы (окислы кремния, марганца, серы, фосфора). Поэтому доменный чугун представляет собой сплав железа с углеродом, кремнием, марганцем, серой и фосфором.
Влияние химических элементов на свойства чугуна. Свойства чугунов зависят от химического состава, т. е. от содержания в них углерода, кремния, марганца, фосфора, серы.
Углерод, химически связанный с железом, образует цементит Fc3C. Цементит придает чугуну хрупкость, но значительно повышает твердость. Такой чугун, имеющий в изломе блестящий металлический оттенок, называют белым. Белые чугуны не обрабатываются режущим инструментом.
Углерод в чугуне может находиться в свободном состоянии в виде графита. Цементит в таких чугунах не образуется, поэтому их твердость значительно ниже твердости белых чугунов; такие чугуны хорошо обрабатываются резанием. Присутствие графита придает чугуну в изломе серый, матовый оттенок; чугун в данном случае называют серым.
Кремний способствует выделению углерода в чугуне в виде графита, улучшает литейные свойства чугуна, понижает его твердость.
Марганец препятствует выделению углерода в чугуне в виде графита и способствует образованию цементита, поэтому повышает твердость чугуна и при определенном содержании его увеличивает прочность.
Фосфор, соединяясь с железом, образует легкоплавкую хрупкую и твердую составляющую, которая располагается по границам зерен чугуна, вследствие чего у чугуна значительно повышаются хрупкость и твердость, увеличивается износостойкость. Образующаяся легкоплавкая составляющая улучшает заполняемость литейных форм жидким чугуном. Фосфор — вредная примесь.
Сера тормозит выделение углерода в чугуне в виде графита. Образуя по границам зерен чугуна хрупкую составляющую, сера снижает механические свойства, способствует образованию трещин в отливках. Вредное влияние серы может быть нейтрализовано повышенным содержанием марганца, с которым сера легко образует тугоплавкое соединение.
Продукты доменного производства. Продуктами доменного производства служат чугун, доменные ферросплавы, доменный газ и доменный шлак. В зависимости от назначения чугун подразделяется на передельный и литейный.
Передельный чугун (ГОСТ 805—80), используемый преимущественно для выплавки стали, имеет следующий химический состав (%): углерод 4…4,5; кремний не более 1,2; марганец не более 1,5; фосфор не более 0,3; сера не более 0,5. Все передельные чугуны, как правило, белые.
Литейный чугун (ГОСТ 4832—80), предназначенный для производства чугунных отливок различного назначения, имеет следующий химический состав (%): углерод 3,5…4,5; кремний 1…3,6; марганец 0,5.. .1,5; фосфор 0,08…1,2; сера 0,02…0,06. Все литейные чугуны содержат большее количество кремния, чем белые, и не содержат структурно свободного цементита, поэтому они относятся к серым чугунам.
Доменные ферросплавы содержат большое количество кремния или марганца. Доменный ферросилиций, который включает в себя 9… 13 % кремния, используют при плавке в литейных цехах для повышения содержания кремния в серых чугунах. Доменный ферромарганец, в который входит до 75 % марганца, применяют для повышения содержания марганца при производстве стали.
Доменный газ, содержащий до 30 % СО, хорошо горит, поэтому его используют для подогрева воздуха, подаваемого в доменную печь, и как промышленное топливо. Из доменной печи газ отводят сверху по трубопроводам.
Доменный шлак как отход металлургической промышленности используют в промышленности строительных материалов для изготовления цемента, шлакобетоа, шлаковой ваты и других материалов. Металлургический шлак находит широкое применение в дорожном строительстве.
Серые чугуны
Серые чугуны получают из литейных доменных чугунов с добавкой в состав шихты чугунного лома. Химический состав серых чугунов (%): углерод 2,8…3,5, кремний 1,5…2,8, марганец 0,4…0,8, фосфор 0,2… 1, сера 0,08…0,12. Применяют серые чугуны для производства отливок деталей различных машин и механизмов, труб, санитарно-технического оборудования. Серые чугуны маркируют в зависимости от их механических свойств (табл.2).
Таблица 2. Механические свойства серого чугуна (ГОСТ 1412—79)
В марке чугуна буквы СЧ обозначают, что чугун серый; цифры показывают предел прочности чугуна при растяжении.
Для изготовления отливок, обладающих прочностью на растяжение до 200..250 Н/мм2, используют обычные серые чугуны; для изготовления отливок более высокой прочности — чугуны со специальными добавками хрома, никеля и других элементов. Такие чугуны называют л егированными.
В зависимости от технологии производства серые чугуны подразделяются на высокопрочные и ковкие.
Высокопрочные серые чугуны получают путем введения в расплавленный чугун небольшого количества магния и редкоземельных элементов — церия, лантана, ниодима или их смеси. Процесс введения этих добавок в жидкий чугун с целью изменения структуры называют модифицированием. В результате модифицирования графит кристаллизуется в виде шара, а не в виде пластинок. Поэтому показатели механических свойств чугуна значительно повышаются (табл. 3).
Таблица 3. Механические свойства высокопрочного чугуна (ГОСТ 7293—79)
В марке чугуна буквы ВЧ обозначают, что чугун высокопрочный; первые цифры показывают предел прочности при растяжении, вторые — относительное удлинение.
Высокопрочный чугун широко применяют для изготовления коленчатых валов двигателей, тяжелонагру-женных отливок деталей строительных и дорожных машин и т. д. В настоящее время многие детали, изготовляемые ранее из стальных литых и кованых заготовок, отливают из высокопрочного чугуна.
Ковкие чугуны получают путем термической обработки отливок из доэвтектического белого чугуна, в структуре которого содержится большое количество цементита. Отливки из доэвтектического белого чугуна обладают очень высокой твердостью и хрупкостью и не обрабатываются режущим инструментом. Чтобы снизить твердость и повысить пластические свойства, отливки подвергают длительному нагреванию при высокой температуре в специальных термических печах. Такой процесс называют отжигом. При отжиге цементит разлагается на углерод (графит), который выделяется в виде хлопьев, и железо. В зависимости от химического состава белого доэвтектического чугуна и режима его отжига металлическая основа отливки может состоять из феррита или перлита.
Ферритная или перлитная металлическая основа и углерод хлопьевидной формы обеспечивают ковким чугунам высокие прочность и пластичность. Если после отжига чугуна металлическая основа состоит из феррита, то такой чугун называется ферритным ковким, если же из перлита, то перлитным ковким. На практике чаще получают отливки из ферритного ковкого чугуна.
Рис. 5. Режимы отжига белого чугуна при получении ковкого чугуна:
а — ферритного, б — перлитного;
1 …5 — этапы отжига
Отжиг для получения ферритного ковкого чугуна состоит из пяти этапов (рис. 5, а):
1. Нагревание до температуры 900…1000 °С.
2. Выдержка при температуре 900…1000 °С, во время которой цементит распадается на аустенит и углерод отжига.
3. Охлаждение до температуры ниже эвтектоидного превращения (690…700°С); при этих температурах из аустенита выделяется углерод отжига; аустенит же пре вращается в перлит.
4. Выдержка при температуре 690…700°С, во время которой из перлита получаются феррит и углерод отжига; к концу выдержки образуется структура феррит +; углерод отжига.
5. Охлаждение до нормальной температуры. Общий пикл отжига составляет 50…60 ч.
Отжиг для получения перлитного ковкого чугуна состоит из четырех этапов (рис. 5, б):
1. Нагревание до температуры 1000…1050 °С.
2. Выдержка при температуре 1000…1050 °С, во время которой цементит распадается на аустенит и углерод отжига.
3. Охлаждение до температуры ниже эвтектоидного превращения (690…700 °С); при охлаждении из аустенита выделяется углерод отжига; аустенит превращается в перлит.
4. Минуя выдержку при температуре 690…700 °С, отливки охлаждают до нормальной температуры. Образуется структура перлит+углерод отжига. Цикл отжига составляет 100…110 ч.
Совершенствование технологии отжига и использование электрических печей позволяют сократить время отжига отливок на ковкие чугуны до 30…40 ч.
Механические свойства ковкого чугуна в зависимости от марок приведены в табл. 4.
Таблица 4. Механические свойства ковкого чугуна
В марке чугуна буквы КЧ обозначают, что чугун ковкий; первые цифры показывают предел прочности при растяжении, вторые — относительное удлинение.
Из ковких чугунов изготовляют небольшие тонкостенные отливки, картеры автомобилей, детали тракторов, арматуру и другие детали массового производства.
Производство стали
Общие сведения. На металлургических заводах сталь получают из жидкого передельного чугуна с добавкой стального лома в кислородных конвертерах и мартеновских печах. На машиностроительных заводах сталь плавят из стального лома с добавкой твердого передельного чугуна в мартеновских, электрических дуговых и индукционных печах. В процессе плавки во все плавильные агрегаты добавляют флюсы для осуществления окислительно-восстановительных реакций и защиты расплавленного металла от воздействия окислительной воздушной среды.
По сравнению с чугуном в стали содержится меньше углерода и примесей кремния, марганца, серы и фосфора. Следовательно, чтобы из чугуна получить сталь, надо удалить значительную часть углерода и примесей, что делают путем окисления этих элементов. В процессе плавки окислы элементов удаляют из стали вместе со шлаком. В конце плавки из расплавленной стали отбирают растворившийся в ней кислород — сталь раскисляют. Раскислителями служат ферросплавы.
Сталь, выплавленную в конвертерах и мартеновских печах, по степени раскисления подразделяют на кипящую, спокойную и полуспокойную.
Кипящей называют сталь, раскисленную только марганцем, т. е. неполностью раскисленную. При разливке и охлаждении такой стали из нее выделяются пузырьки газов, которые создают впечатление кипения стали. Не успевшие выделиться газы образуют внутри металла пузырьки, которые распределяются по всему объему слитка. При горячей прокатке слитков кипящей стали эти пузырьки, имеющие чистые неокисленные стенки, хорошо завариваются. Стоимость кипящей стали меньше, чем спокойной и полуспокойной сталей, что объясняется меньшим расходом раскислителей при плавке и меньшим количеством отходов металла при прокатке. Кроме того, кипящая сталь лучше прокатывается и штампуется. Листовой металл для глубокой вытяжки, сварные трубы делают из слитков кипящей стали. Кипящими выпускают только малоуглеродистые стали.
Спокойную сталь разливают полностью раскисленной. Спокойная сталь содержит меньше растворенных газов. Она более однородна по составу, чем кипящая сталь, поэтому обладает более высокой прочностью. Спокойную сталь используют преимущественно для изготовления тяжелонагруженных деталей машин, от которых требуется высокая стабильность и равномерность свойств по всему их сечению. Стали с содержанием углерода выше 0,2 % разливаются полностью раскисленными.
Полуспокойная сталь по степени раскисления занимает промежуточное положение между кипящей и спокойной. Раскисляется неполностью марганцем и частично кремнием. Применяют такую сталь ограниченно при производстве листового металла и профилей проката, обладающих требуемой прочностью. Полуспокойными выпускают только малоуглеродистые стали (с содержанием углерода не выше 0,2 %).
Выплавка стали в кислородном конвертере. Этот способ производства стали получил широкое распространение, так как в конвертерах можно перерабатывать чугун, а также железный лом.
Рис. 6. Схема кислородного конвертера
1 — конвертер. 2—перерабатываемый металл, 3 — зонт,
4 — направляющая для опускания и подъема фурмы, 5—фурма
Кислородный конвертер 1 (рис. 6) представляет собой стальной сосуд грушевидной формы, выложенный изнутри огнеупорными материалами. В конвертер сначала загружают стальной лом в количестве до 20 % от массы плавки и разогревают его. Затем заливают жидкий чугун и добавляют флюсы (известь и железную руду) для образования шлака, после чего через водоохлаждаемую медную трубу (фурму 5) в конвертер вдувают кислород под давлением около 1 МПа. Фурма может перемещаться в вертикальном направлении с помощью направляющей 4. Газообразные продукты горения (СО, СО2 и др.) удаляются через вытяжной зонт 3.
При продувке кислородом происходит интенсивное окисление кремния, марганца, углерода и частично железа. Окисляются также вредные примеси — сера и фосфор. Окислы переходят в шлак и удаляются из конвертера. Реакции окисления идут с выделением тепла, поэтому температура металла в конвертере повышается до 1650 °С. Продувку продолжают до тех пор, пока содержание углерода в стали не достигнет заданного предела. После раскисления стали добавляют легирующие элементы и производят выпуск стали. Общая продолжительность одной плавки около 45 мин.
В кислородных конвертерах можно получить углеродистые стали практически любого химического состава, не уступающие по качеству стали, получаемой в мартеновских печах. В настоящее время мощность кислородных конвертеров составляет 360 т; проектируются конвертеры мощностью 500 т. Выплавка стали в кислородных конвертерах—высокопроизводительный и перспективный процесс.
Выплавка стали в мартеновских печах. Мартеновская печь (рис. 7)—это сложный металлургический агрегат, состоящий как бы из двух этажей: верхнего и нижнего, На верхнем этаже находится специальная ванна, выложенная из огнеупорного кирпича, в которой ведется плавка. На нижнем этаже расположены четыре камеры-регенератора 8, 8′, 10, 10′, стены которых выложены огнеупорной кладкой в виде решеток.
В плавильное пространство печи через окна 3 сначала загружают холодные твердые материалы (стальной лом и передельный чугун) и разогревают их. Затем заливают жидкий чугун, подают флюсы и железную руду для окисления примесей. По каналам б и 7 в верхнюю часть печи подводятся предварительно подогретые в регенераторах 8, 10 газ и воздух, которые смешиваются и сгорают, выделяя тепло для расплавления шлака 4 и металла /. Продукты горения отсасываются из плавильного пространства с противоположного торца печи, проходят через вторую пару регенераторов 8′, 10′, нагревая их, проходят через фильтры и выбрасываются в дымовую трубу 12.
Рис. 7. Схема мартеновской печи:
1 — расплавленный металл, 2 — свод. 3 — загрузочные окна, 4 — расплавленный шлак, 5 — под. 6, 6′ — каналы для подвода газа и отвода продуктов горения, 7, Т — каналы для подвода воздуха и отвода продуктов горения, 8, 8′ — газовые регенераторы, 9 — рабочий уровень площадки, 10, 10′ — воздушные регенераторы, Л — перекидные клапаны, 12 — дымовая труба
При повороте перекидных клапанов // направление продуктов горения изменяется на обратное и они нагревают регенераторы 8, 10. В это же время регенераторы
8′, 10′ отдают накопленное тепло воздуху и газу, поступающим в печь.
В процессе плавки клапаны несколько раз переключаются. В результате продукты горения нагревают то одну, то другую пару регенераторов, а топливо (газ и воздух), также меняя направление, подаются в печь только через раскаленную пару регенераторов.
Рис. 8. Схема трехфазной дуговой электросталеплавильной печи:
1 — футеровка, 2 — желоб для выпуска металла, 3 — свод, 4 — электроды,
5 — вторичные обмотки печного трансформатора, 6 — дверца рабочего окна,
7 — расплавленный металл, 8 — кожух, 9 — механизм для наклона печи
На последнем этапе плавки происходит раскисление металла. Готовую сталь выпускают, окончательно раскисляя при выпуске алюминием. Процесс плавки длится 5…7 ч; вместимость печей достигает 900 т стали.
В мартеновских печах плавят качественные углеродистые и легированные стали, из которых изготовляют прокат различных профилей, трубы, балки и другие изделия.
Выплавка стали в электрических печах. Электрические сталеплавильные печи подразделяются на дуговые и индукционные. Дуговая электросталеплавильная печь (рис.8) имеет цилиндрическую форму и состоит из стального кожуха 8, выложенного изнутри огнеупорным кирпичом 1. Сверху печь накрывается крышкой, называемой сводом 3. Через специальные отверстия в своде в печь опускают три графитовых электрода 4 (по числу фаз трехфазного электротока) и включают ток. Между электродами и металлом 7 в печи возникает электрическая дуга, которая создает высокую температуру, и шихта плавится. Далее процесс ведется подобно плавке в мартеновских печах.
Качество стали, выплавленной в дуговых электрических печах, выше, чем качество конвертерной и мартеновской сталей, что достигается следующим: меньшей насыщенностью газами, так как в электрической печи значительно слабее газовая окислительная атмосфера и меньше продуктов горения; созданием благоприятных условий для применения более химически активных шлаков, с которыми лучше удаляются вредные примеси.
Рис. 9. Схема индукционной печи:
1 — крышка, 2 — индуктор, 3 — огнеупорный тигель,
4 — подъемный механизм, 5 — ковш
В дуговых электрических печах выплавляют высококачественные легированные стали, содержащие тугоплавкие элементы,—вольфрам, молибден, ванадий. В настоящее время большинство сортов специальных высококачественных сталей выплавляется в электрических печах, вместимость которых колеблется от 1 до 200 т.
Индукционная печь (рис. 9) представляет собой мно-говитковый спиральный индуктор 2, изготовленный из медной водоохлаждаемой трубки. Внутри индуктора помещается огнеупорная набивная футеровка в виде тигля 3, куда закладывается строго дозированный по расчету металл. На индуктор подается переменный ток, который создает вокруг него магнитное поле. Магнитный поток пронизывает металл и возбуждает в нем мощные вихревые индукционные токи, которые нагревают металл до высоких температур. Шлак, не обладающий магнитной проницаемостью (т. е. ток в нем не индуцируется), нагревается от металла; в результате температура шлака ниже температуры металла, вследствие чего шлак малоактивен и окислительно-восстановительные реакции протекают медленно. Шлак служит защитным слоем от окисления и поглощения газов из воздуха. Поэтому плавку в индукционной печи ведут преимущественно методом переплава высоколегированных сталей и сплавов. При переплаве легирующие элементы слабо окисляются и химический состав металла почти не изменяется. Качество стали получается очень высокое. Расход электроэнергии 700…900 кВт-ч/т стали. Применяют печи вместимостью до 10 т.
Разливка стали. Когда плавка в конвертерах, мартеновских печах и электропечах закончится, сталь выпускают в специальный ковш, из которого ее разливают одним из приведенных ниже способов.
Разливку сверху (рис. 10, а) производят в изложницы 2 — высокие металлические формы. После того как металл застынет, получаются слитки, с которых снимают изложницы. Этим способом изготовляют крупные слитки.
Рис. 10. Схема разливки стали:
а — сверху, б — снизу (сифонный способ), в — непрерывная разливка;
1 — ковш, 2 — изложница, 3 — литник, 4 — металлическая плита, 5 — воронка, 6 — кристаллизатор, 7 — жидкая сталь, 8 — кристаллизующийся слиток, 9 — дождевальное устройство, 10 — валки, 11 — затвердевший непрерывный слиток, 12 — газорезка, 13 — тележки, 14— отрезанный мерный слиток
При разливке снизу (рис. 10, б)—сифонный способ — изложницы 2 устанавливают на металлические плиты 4. Изложницы соединяются между собой и с центральным литником 3, в который заливают из ковша 1 сталь. Изложницы заполняются по методу сообщающихся сосудов. Через один литник отливают до 30 некрупных слитков.
Непрерывная разливка стали (рис. 10, в) — наиболее прогрессивный способ, разработанный советскими металлургами. Установка для непрерывной разливки стали была пущена впервые в нашей стране в 1956 г. Жидкая сталь из ковша 1 через промежуточную воронку 5 поступает в медную водоохлаждаемую форму — кристаллизатор 6. Дно кристаллизатора перед заливкой закрыто крышкой — затравкой с ласточкиным хвостом. Жидкая сталь 7, попав в кристаллизатор, быстро затвердевает, приваривается к затравке и вместе с ней вытягивается из кристаллизатора валками 10 со скоростью 1…5 м/мин. При выходе из кристаллизатора слиток 8, поверхность которого затвердела, подвергается дополнительному охлаждению дождевальным устройством 9. Окончательно затвердевший непрерывный слиток 11 валками 10 подается к газорезке 12, разрезается на отрезки 14 заданной длины, которые тележками 13 транспортируются в цехи для прокатки на сортовых станах. По сравнению с разливкой в изложницы непрерывная разливка стали обеспечивает уменьшение потерь металла, не требует прокатки слитков на блюмингах и слябингах и изготовления изложниц.
Углеродистые стали
Углеродистые стали — сплавы, содержащие железо, углерод и небольшое количество примесей кремния, марганца, фосфора и серы. По содержанию углерода такие стали подразделяются на низкоуглеродистые (до 0,2 % углерода), среднеуглеродистые (от 0,3 до 0,65 углерода), высокоуглеродистые (от 0,65 до 2 % углерода). По назначению углеродистые стали бывают конструкционные и инструментальные.
Углеродистые конструкционные стали обладают высокой прочностью, пластичностью и вязкостью в сочетании с хорошими технологическими свойствами: легко обрабатываются давлением хорошо свариваются и термо-обрабатываются.
Такие стали бывают обыкновенного качества и качественные.
Сталь углеродистая обыкновенного качества (ГОСТ 380—71) выплавляется в мартеновских печах и кислородных конвертерах. По назначению такая сталь подразделяется на группы А, Б и В.
Сталь группы А поставляют с гарантированными механическими свойствами без уточнения химического состава, поэтому ее не подвергают термической обработке. Сталь этой группы изготовляют марок: СтО, Ст1 и т. д. до Стб. Буквы «Ст» означают сталь, цифра — номер стали. Чем больше цифра, тем больше содержится углерода в стали. Для обозначения раскисления к обозначению марки стали после номера добавляют индексы: кп — кипящая, пс—полуспокойная, сп — спокойная. Например, Ст3кп, Ст4сп.
Сталь группы Б поставляют с гарантированным химическим составом, поэтому ее можно подвергать термической обработке. Сталь этой группы изготовляют марок: БСтО, БСт1, БСт1кп и т.д. до БСтб, БСтбсп. В марке сталей указывается группа Б.
Сталь группы В поставляют с гарантированными механическими свойствами и химическим составом. Подвергается термической обработке. Сталь этой группы изготовляют марок (группа стали указывается в марке)з ВСт2сп, ВСт3пс и т. д.
Из сталей обыкновенного качества изготовляют горячекатаный прокат: балки, прутки, швеллеры, уголки, листы, трубы, некоторые поковки, болты, заклепки, арматуру, которые широко используют для сварных строительных конструкций и неответственных деталей машин.
Углеродистая качественная конструкционная сталь (ГОСТ 1050—74) выплавляется в мартеновских и электрических печах и кислородных конвертерах. Поставляется сталь с гарантированными механическими свойствами и химическим составом. Подвергается термической обработке.
По сравнению с углеродистыми сталями обыкновенного качества качественные стали содержат меньше вредных примесей серы и фосфора. В зависимости от содержания марганца стали выпускают с нормальным (0,25…0,7 %) и повышенным (0,7…1 %) содержанием марганца.
Качественные конструкционные стали маркируются: 0,5кп; 0,8кп; 0,8пс; 0,8; 10кп; 10пс; 10; 15кп; 15; 20кп; 20; 25; 30; 35 и т. д. до 85, 15Г, 20Г, 25Г, 30Г и т. д. до 70Г. В марках двузначные числа показывают среднее содержание углерода в сотых долях процента, буква Г обозначает повышенное содержание марганца.
Низкоуглеродистые качественные конструкционные стали широко применяют для штампованных изделий. Штампуемость стали тем хуже, чем больше в ней углерода. Для глубокой вытяжки применяют кипящие стали 0,8кп, Юкп, 15кп. Малоуглеродистые стали применяют для изделий, подвергающихся цементации. Эти стали хорошо свариваются, обрабатываются резанием на металлорежущих станках.
Из качественных конструкционных сталей изготовляют зубчатые колеса, шатуны, валы, оси, кулачки, муфты, толкатели клапанов, пальцы рессор, вилки и валики переключения передач и т. д.
Углеродистые инструментальные стали (ГОСТ 1435 — 74) выплавляются в мартеновских и электрических печах; они содержат от 0,7 до 1,35 % углерода. Такие стали подразделяются на качественные и высококачественные.
Инструментальные качественные стали изготовляют марок: У7, У8, У9, …, У13. Число в обозначении марки указывает на среднее содержание углерода в десятых долях процента.
К марке инструментальных высококачественных сталей добавляют букву А: У7А, У8А, …, У13А. Такие стали содержат меньше серы и фосфора, чем качественные.
Из углеродистых инструментальных сталей изготовляют разнообразные слесарные инструменты, подвергаемые термической обработке. Из сталей марок У7А, У8, У8А делают зубила, молотки, штампы, измерительный инструмент; из стали марок У8, У8А — ножи и ножницы по металлу, кернеры, ролики труборезов. Из сталей марок У10А, У11, У11А, У12, У12А изготовляют инструменты, обладающие высокой твердостью: напильники, шаберы, ножовочные полотна для механических ножовок.
Легированные стали
Легированные стали в отличие от углеродистых кроме углерода, железа и обычных примесей содержат определенное количество добавок, придающих сталям особые свойства и называемых легирующими элементами. К легирующим элементам относятся хром — X, вольфрам — В, молибден — М, медь — Д, кремний — С, алюминий— Ю, бор — Р, цирконий — Ц, никель — Н, ванадий— Ф, марганец—Г, кобальт — К, титан — Т, фосфор— П, ниобий — Б. Каждый легирующий элемент имеет свое назначение.
По назначению легированные стали подразделяются на конструкционные, инструментальные и стали со специальными свойствами.
Влияние легирующих добавок на свойства сталей. Свойства легированных сталей зависят от содержания в них легирующих элементов.
Никель и хром улучшают механические свойства, повышают жаростойкость и коррозионную стойкость сталей.
Вольфрам повышает твердость, прочность, улучшает режущие свойства стали при высоких температурах (красностойкость).
Марганец повышает твердость, износостойкость, сопротивление ударным нагрузкам сталей.
Кремний повышает упругие свойства стали, увеличивает кислотостойкость сталей.
Титан увеличивает жаропрочность и кислотостойкость сталей.
Молибден улучшает механические свойства при нормальной и повышенной температурах, несколько повышает свариваемость сталей.
Ванадий улучшает пластические свойства стали, измельчает ее микроструктуру.
Кобальт увеличивает ударную вязкость и жаропрочность сталей.
Конструкционные стали (низколегированные) содержат углерод не более 0,6%. Основные легирующие элементы таких сталей — хром, никель, кремний, марганец. Другие легирующие элементы вводят в сталь в небольших количествах, чтобы дополнительно улучшить ее свойства. Общее количество легирующих элементов у большинства сталей не превышает 5%.
Конструкционные низколегированные стали (ГОСТ 19281—73, ГОСТ 19282—73) обладают наилучшими механическими свойствами после термической обработки.
При маркировке легированных сталей первые две цифры показывают содержание углерода в сотых долях процента, следующая за ними буква — условное обозначение легирующего элемента, входящего в сталь. Если количество легирующего элемента составляет 2 % и более, то после буквы ставится еще цифра, указывающая это количество. Например, 15Х — сталь содержит 0,15% углерода и до 1 % хрома, 20Х2Н4А — сталь содержит 0,20 % углерода, около 2 % хрома, 4 % никеля, высококачественная (А), т.е. содержит меньше вредных примесей серы и фосфора.
Легированные конструкционные стали 19Г, 14Г, 17ГС, 14ХГС широко применяют при строительстве нефтегазопроводов высокого давления диаметром до 820 мм. Сталь 14ГС используют для крупных листовых сварных конструкций доменных печей, пылеуловителей, воздухонагревателей. Сталь 17ГС предназначается для корпусов аппаратов, днищ, фланцев и других деталей паровых котлов, работающих при температурах до 450 °С.
Хромокремненикелевые стали 10ХСНД, 15ХСНД используют для сварных ферм, конструкций мостов, вагонов, рам, аппаратов и сосудов химической промышленности. Стали 35ХС и 25Г2С служат для изготовления арматуры гладкого и периодического профилей, для армирования обычных и предварительно напряженных железобетонных конструкций.
Легированные конструкционные стали хорошо свариваются, не образуют при сварке горячих и холодных трещин. Механические свойства сварных соединений аналогичны свойствам основного металла.
В машиностроении применяют большое количество марок легированных конструкционных сталей, главным образом для изготовления ответственных деталей машин и металлических конструкций: валов двигателей, тяже-лонагруженных зубчатых колес экскаваторов, автокранов и других строительных машин, деталей и арматуры, работающих при повышенных температурах. Из кремнистых сталей изготовляют рессоры и пружины.
Инструментальные стали подразделяются на низколегированные с содержанием легирующих элементов до 5 % и высоколегированные с содержанием легирующих элементов более 10 %.
Низколегированные инструментальные стали (ГОСТ 5950—73) 11Х, 13Х, ХСВГ, 9ХС, ХВГ после термической обработки обладают более высокими показателями механических свойств по сравнению с углеродистыми инструментальными сталями: имеют более высокую твердость после термообработки (62…65 HRC), повышенные износостойкость и теплостойкость (до 200…250°С), меньшую чувствительность и склонность к перегреву и короблению при термообработке.
Низколегированные инструментальные стали применяют для изготовления режущих инструментов большого сечения, работающих при небольших скоростях резания: ручных сверл, протяжек, разверток, гребенок.
Высоколегированные инструментальные стали (ГОСТ 19265—73) содержат большое количество легирующих элементов, образующих в структуре стали химические соединения с углеродом (преимущественно карбиды). Основной легирующий элемент таких сталей — вольфрам. Изделия, изготовленные из высоколегированных инструментальных сталей с большим количеством карбидов, сохраняют высокие твердость, прочность и износостойкость режущей кромки инструмента при температурах 600…620°С в процессе резания металлов с большой скоростью. Такие стали называют быстрорежущими.
В состав быстрорежущих сталей входят, % углерод 0,7…0,95; хром 3,1…4,4; вольфрам 8,5…19; ванадий 1… …2,5. Маркируются быстрорежущие стали следующим образом: Р9, Р18, Р12, где буква Р обозначает, что сталь быстрорежущая; цифры 9, 18, 12 показывают среднее содержание вольфрама, предусмотренное стандартом.
Быстрорежущие стали обладают высокими показателями механических свойств после сложной термической обработки. Из таких сталей изготовляют сверла, фрезы, долбяки, протяжки, развертки, пилы, напильники для твердых металлов и другой инструмент.
К быстрорежущим относятся также стали: высокованадиевые Р9Ф5, Р14Ф4, кобальтовые Р9К5, Р9К10, кобальто-ванадиевые Р10К.5Ф5, Р18К5Ф2 и вольфрамо-молибденовая Р6МЗ. Эти стали обладают повышенной теплостойкостью, меньшей хрупкостью. Применяют их для изготовления режущих инструментов, предназначенных для обработки жаропрочных и нержавеющих сталей с высокой вязкостью, титановых сплавов и пластмасс.
Стали со специальными свойствами (ГОСТ 5632—72) в зависимости от основных свойств бывают коррозион-ностойкие, жаростойкие, жаропрочные и износостойкие. Такие стали содержат большое количество легирующих элементов (10…35 %).
Коррозионностойкие нержавеющие стали обладают высокой стойкостью против электрохимической коррозии. По содержанию основных легирующих элементов — хрома и никеля — коррозионностойкие стали бывают хромистые и хромоникелевые: 1Х18Н9Т, 5Х18Н9, 15Х25Н19С, 45Х17ПЗНЗЮ, 55Х18П4СТ и др. Из коррозионностой-ких сталей изготовляют арматуру, коллекторы выхлопных систем, детали паровых и газовых турбин, детали химического машиностроения и т. п.
Жаростойкие стали, обеспечивающие длительную стойкость деталей при небольших нагрузках, можно использовать при температурах выше 550 °С. Такие стали устойчивы против химического разрушения в газовых средах. К жаростойким сталям относятся стали марок 25Х23Н7С, 30Х24Н12С, 15Х6С10, 12X13, 09Х14Н16Б, 15X28. Из них изготовляют клапаны двигателей внутреннего сгорания, лопатки компрессоров, детали котельных установок, газовые турбины, трубы пароперегревателей и других деталей, работающих при высоких температурах и небольшом давлении.
Жаропрочные стали, обеспечивающие длительную стойкость деталей в работе, можно применять при высоких температурах и больших нагрузках; при этом они сохраняют жаростойкость и высокие показатели механических свойств (прочность, пластичность).
К жаропрочным сталям относятся стали марок 12Х8ВФ, 10Х11Н20ТЗР, 09Х16Н4Б; их применяют для изготовления деталей турбин, трубопроводов установок сверхвысокого давления и других деталей.
Износостойкая сталь (ГОСТ 2176—77) марки 110Г13Л, получившая наибольшее распространение, содер
Дата добавления: 2016-12-27; просмотров: 11076;
Похожие статьи:
Влияние различных соединений на свойства
Независимо от вида и марки чугуна есть ряд элементов, которые значительно влияют на его свойства и технические характеристики. В качестве примера возьмем серый чугун. Повышенное содержание кремния способствует понижению температуры плавления и значительно улучшает его технологические и литейные свойства. По этой простой причине в литейный цех обычно отправляют чугун с большим содержанием этого элемента. А вот марганец – это своего рода противоположность кремнию. Однако он является полезным химическим элементом, так как увеличивает прочность и твердость изделия.
Сера – одно из самых вредных включений, которое существенно снижает жидкотекучесть и тугоплавкость чугуна. Фосфор может оказывать как вредное влияние, так и полезное. В первом случае изготавливают изделия сложной формы, тонкостенные и не требующие большой прочности. А вот марки чугуна с большим содержанием фосфора недопустимо использовать в машиностроении, где нужно добиться большой прочности изделия.
Про науглероживание железа
Восстановленное в ДП железо поглощает в себя самые различные химические элементы и углерод в том числе. Как результат, образуется полноценный чугун. Как только он появляется в твердой форме, сразу же начинается его науглероживание. Сам процесс заметен при относительно невысоких температурах в 400-500 градусов. Кроме того, стоит отметить, что чем больше углерода в составе железа, тем ниже температура плавления. Однако когда металл находится уже в жидком состоянии, процесс протекает несколько интенсивней. Нужно понимать, что после того, как в чугуне будет окончательное количество углерода, изменить это уже будет невозможно. Такие элементы, как марганец и хром, способствуют увеличению содержания углерода, а кремний и фосфор уменьшают его количество.
Немного о литейном производстве
Литье известно человеку уже довольно давно, примерно несколько тысяч лет. Это технологический процесс, позволяющий получить заготовку необходимой формы. Обычно таким способом изготавливают только фасонные детали и заготовки. Суть метода заключается в том, что расплавленный металл или другой материал (пластмасса) выливается в форму, полость которой имеет необходимую конфигурацию будущей детали. Через некоторое время металл застывает и получается заготовка. Она проходит механическую обработку, которая заключается в улучшении качества посадочных поверхностей, получении необходимой шероховатости и т.п. Интересно то, что литейное производство чугуна для промышленного оборудования осуществляется в земле. Для этого изготавливается разовая песчаная форма и подбирается соответствующее оборудование.
Еще кое-что интересное
Стоит обратить ваше внимание на то, что литейное производство использует металл, который был получен в доменной печи. По сути, при вторичной плавке получают изделия с требуемыми свойствами, которые изменяются в плавильной печи. В это же время отливки, химический состав которых оставляют неизменным в литейном производстве, изготавливают крайне редко. В частности это касается чугуна. Когда нужно получить деталь из черного металла, помимо чугуна, в печь загружают ряд модификаторов, флюсов, раскислителей, а также стальной лом и штыковой чугун. Последний нужен для получения стальных и чугунных отливок. Сам же процесс производства чугуна мало чем отличается от доменного производства.
Флюсы, применяемые при плавке чугуна.
Выбор флюса зависит от особенностей состава пустых пород руды, различают основные и кислые флюсы.
- В качестве основного флюса выступают породы содержащие кальциты и магнезиты. Применяются при плавке руды, пустые породы которой в основном составляют глиноземы и кремнеземы.
- Для руд, пустая порода в которых состоит из известняка, применяют кислый флюс, состоящий из кремнеземистой породы.
Флюс, который вводится в шихту, связывает пустую породу, образуя с ней сплав, и выводится в качестве шлаков. Количество шлака достигает 80% от объема полученного чугуна.
Источник