Все способы нахождения площади трапеции

Содержание
  1. Площадь трапеции
  2. Формулы площади трапеции
  3. Площадь любых трапеций
  4. Площадь равнобедренной трапеции
  5. Определения трапеции
  6. Элементы трапеции
  7. Как найти площадь трапеции
  8. Что такое площадь трапеции
  9. Способы нахождения площади
  10. Формулы для вычисления площади равнобедренной и неправильной трапеций
  11. По длине оснований и высоте
  12. Через длины всех сторон (Формула Герона)
  13. Через диагонали и угол между ними
  14. Через радиус вписанной окружности
  15. Через среднюю линию, боковую сторону и угол при основании
  16. Примеры решения задач
  17. Трапеция
  18. Основные свойства трапеции
  19. Формулы определения длин сторон трапеции:
  20. Как найти площадь трапеции через четыре стороны
  21. Средняя линия трапеции
  22. Формулы определения длины средней линии трапеции:
  23. Через длины оснований и высоту
  24. Формула
  25. Пример
  26. Площадь трапеции через перпендикулярные диагонали
  27. Как вычислить площадь равнобедренной трапеции через четыре стороны
  28. Таблица с формулами площади трапеции
  29. Найти площадь равнобедренной трапеции, зная радиус вписанной окружности и угол
  30. Через среднюю линию, боковую сторону и угол при основании
  31. Формулы определения длин отрезков проходящих через трапецию:
  32. Пусть a и b основания трапеции. доказать что отрезок, соединяющий середины её диагоналей равен 1/2 * | а – б|?
  33. Площадь трапеции через основания и два угла

Площадь трапеции

Площадь трапеции, формулы расчета, определение,
способы найти площадь, нахождение площади
через величины и примеры площади трапеции.

Все формулы расчета площади трапеции
через основания и угол, периметр, радиус,
синус и две стороны, диагональ,
высоту, среднюю линию.

Площадь трапеции, можно измерить, в единицах
измерения в квадрате: мм 2 , см 2 , м 2 и км 2 и так далее.

Площадь трапеции через окружность вписанную можно
найти, зная радиус окружности вписанной в трапецию
и некоторые другие величины.

Формулы площади трапеции

Площадь любых трапеций

Ⅰ. Площадь трапеции через основания и высоту:


\[ S = \frac <2>\cdot h \]
a,b — основания трапеции;
h — высота трапеции;

Ⅱ. Площадь трапеции через высоту и среднюю линию:


\[ S = mh \]
m — средняя линия трапеции;
h — высота трапеции;

Ⅲ. Площадь трапеции через диагонали и угол между ними:

\[ S =\frac<1><2>d_1d_2 \cdot \sin \alpha \]
\( d_1, d_2 \) ​​- диагонали трапеции;
sin α — синус угла альфа в трапеции;

Ⅳ. Площадь трапеции через периметр, высоту и боковые стороны:

\[ S = \frac<2>h \]
P — периметр трапеции;
c,d — боковые стороны трапеции;
h — высота трапеции;

Ⅴ. Площадь трапеции через основания и боковые стороны:
\[ S = \frac <2>\cdot \sqrt<2a-2b>)^2> \]
a,b — основания трапеции;
с,d — боковые стороны трапеции;

Ⅵ. Площадь трапеции через основания и углы:

a,b — основания трапеции;
α — угол при основании a в трапеции;
β — угол при основании b в трапеции;
sin α — синус угла альфа в трапеции;
sin β — синус угла бетта в трапеции;

Площадь равнобедренной трапеции

Ⅰ. Площадь трапеции через синус угла, среднюю линию и боковую сторону:

\[ S = ld \cdot \sin α \]

l — средняя линия равнобедренной трапеции;
d — боковая сторона равнобедренной трапеции;
α — угол альфа при боковой стороне d равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;

Ⅱ. Площадь трапеции через диагонали и синус угла:

\[ S = \frac <2>\cdot \sin α \]

d — диагональ равнобедренной трапеции;
α — угол между двумя диагоналями в равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;

Ⅲ. Площадь трапеции через радиус вписанной окружности и основания:

r — радиус вписанной окружности равнобедренной трапеции;
a, b — основания равнобедренной трапеции;

Ⅳ. Площадь трапеции через основания:

a, b — основания равнобедренной трапеции;

Ⅴ. Площадь трапеции через основания и среднюю линию:

l — средняя линия равнобедренной трапеции;
a, b — основания равнобедренной трапеции;

Читайте также:  Бронхоактив шалфей способ применения

Ⅵ. Площадь трапеции через синус угла и стороны:

\[ S = c \cdot \sin α \cdot (a-c \cdot \cos α) \]

a — нижнее основание равнобедренной трапеции;
с — боковая сторона равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;
cos α — косинус угла альфа в равнобедренной трапеции;

Ⅶ. Площадь трапеции через угол и радиус вписанной окружности:

r — радиус вписанной окружности равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;

Определения трапеции

Трапеция — это четырехугольник, у которого две
стороны параллельны а две другие нет.

Зная углы трапеции, можно определить, к какому виду
она относится. Всего различают три вида трапеций:

  • Обычная / стандартная трапеция: четыре угла и четыре стороны не равны.
  • Равнобедренная / равнобочная / равнобоковая трапеция:
    два угла при основании равны, две боковые стороны равны.
  • Прямоугольная / прямаятрапеция: один из углов прямой.

Площадь равнобедренной, прямоугольной трапеции,
можно найти через формулы площади обычной трапеции.

Формул, с помощью которых, можно найти площадь трапеции
через описанную окружность около трапеции, не существует.

Элементы трапеции

Любая трапеция является четырехугольником,
поэтому у трапеции 4 угла и 4 стороны.

Основание трапеции — это сторона, противолежащая
сторона которой параллельна.

Боковая сторона трапеции — это сторона, противолежащая
сторона которой не параллельна.

Средняя линия трапеции — это отрезок, соединяющий
середины боковых сторон трапеции.

Диагональ трапеции — это отрезок, соединяющий две
вершины, которые лежат в разных концах трапеции.

Высота трапеции — это отрезок, соединяющий меньшее основание с большим,
образуя при этом два угла по 90 градусов на большей стороне.

Основания у трапеции не могут быть никогда равны.
Боковые стороны могут быть равны только,
если трапеция — равнобедренная.

Площадь трапеции — это площадь геометрической фигуры,
у которой четыре стороны и четыре угла, причем только
две стороны параллельны а остальные нет.

Источник

Как найти площадь трапеции

Что такое площадь трапеции

Трапеция — четырехугольник, две стороны которого, называемые основаниями, параллельны друг другу, а две другие стороны — нет.

Вычисление площади трапеции входит в раздел геометрии, который называется планиметрия и занимается фигурами на плоскости.

Площадь трапеции, как и любой другой геометрической фигуры — это часть плоскости, ограниченная периметром и измеряемая в квадратных единицах.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В формулах основания обозначаются буквами a и b, боковые стороны — с и d.

Способы нахождения площади

Существует более двадцати способов вычисления площади трапеции. Выбор способа расчета зависит от известных данных, которые можно подставить в формулу, и от типа самой трапеции: она может быть равнобедренной (равнобокой) или прямоугольной, тогда задача упростится.

Например, если трапеция равнобедренная, вычислить длину ее сторон можно, разбив ее на прямоугольник и два прямоугольных треугольника.

Если трапеция прямоугольная, легко запомнить соотношение ее сторон, пользуясь формулами для усеченного конуса, который образуется при ее вращении вокруг ее боковой стороны, находящейся под прямым углом к основаниям:

Стороны такой трапеции, наглядно видные на схеме, связаны следующим соотношением:

Но большинство формул подходит и для разносторонних трапеций. Если задача практическая и трапеция имеет материальную форму, основания, боковые стороны, высоту и диагонали легко измерить с помощью линейки.

Формулы для вычисления площади равнобедренной и неправильной трапеций

По длине оснований и высоте

Площадь трапеции равна произведению половины суммы оснований на высоту:

Через длины всех сторон (Формула Герона)

Чтобы посчитать площадь через длины сторон, можно воспользоваться следующей формулой:

Читайте также:  Способы возврата долга по договору займа

Существует более простая формула, известная, как формула Герона. Для облегчения ее запоминания вводится р, полусумма всех четырех сторон:

Через диагонали и угол между ними

\(S = \frac<1><2>\times d_ <1>\times d_ <2>\times \sin\alpha.\)

Здесь \(d_<1>\) и \(d_<2>\) — диагонали, а \(\alpha\) — угол, образованный ими.

Через радиус вписанной окружности

Вписать окружность в трапецию можно только тогда, когда сумма ее оснований равна сумме боковых сторон.

Площадь любой трапеции можно найти через радиус вписанной окружности, зная длину оснований:

\(S = (a + b) \times r.\)

Площадь равнобокой трапеции также можно найти через круг, вписанный в нее. Для этого нужно знать радиус этого круга, а также угол \(\alpha\) при основании.

Через среднюю линию, боковую сторону и угол при основании

Такой способ нахождения площади подходит только для равнобоких трапеций. В этой формуле средняя линия обозначается буквой m, боковая сторона — буквой с, а угол при основании — \(\alpha\) . Зная длину средней линии и боковой стороны, достаточно найти синус угла и умножить эти значения друг на друга:

\(S = m \times c \times \sin\alpha.\)

Примеры решения задач

Найти площадь трапеции, размер одной диагонали которой равен 6 см, второй — 9 см, а угол между ними — \(30^\circ.\)

Подставим известные данные в формулу:

\(S = \frac<1><2>\times d_ <1>\times d_ <2>\times \sin\alpha\)

Получим: \(S = \frac<1><2>\times 6 \times 9 \times \sin30^\circ = 13,5. \)

Параллельные стороны плоской геометрической фигуры равны 9 и 5 см. Расстояние между ними — 7 см. Найти площадь фигуры.

Подставим известные данные в формулу:

\(S = \frac<1> <2>(a+b) \times h\)

\(S = \frac<1> <2>(9+5) \times 7 = 49.\)

Найти площадь трапеции, если известны длины непараллельных сторон — 13 и 15 см, а также разность длин оснований — 14 см. В трапецию вписана окружность.

Одно из основных свойств трапеции — в нее можно вписать окружность, если сумма оснований равна сумме боковых сторон. Следовательно, если представить две проведенные высоты, как на рисунке, АК + МD = АD — BC = 14.

Поскольку углы К и М являются прямыми, воспользуемся теоремой Пифагора:
\(AB^ <2>= AK^ <2>+ BK^<2>.\)
\(BK^ <2>= AB^ <2>— AK^<2>.\)
\(CD^ <2>= CM^ <2>+ MD^<2>.\)
\(CM^ <2>= CD^ <2>— MD^<2>.\)
\(BK = CM.\)
\(AB^ <2>— AK^ <2>= CD^ <2>— MD^<2>.\)

Подставим числовые значения:
\(13^ <2>— (14 — MD)^ <2>= 15^ <2>— MD^<2>.\)
MD = 9 см.
\(CM^ <2>= CD^ <2>— MD^<2>.\)

Теперь, вычислив высоту, мы можем воспользоваться формулой:

\(S = \frac<1> <2>(a+b) \times h\)

Подставим в нее известные значения, получив:

Источник

Трапеция

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a – h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a – c· cos α – d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с = h d = h
sin α sin β

Как найти площадь трапеции через четыре стороны

Отнимите от большего основания меньшее.

Найдите квадрат полученного числа.

Прибавьте к результату квадрат одной боковой стороны и отнимите квадрат второй.

Поделите полученное число на удвоенную разность оснований.

Найдите квадрат результата и отнимите его от квадрата боковой стороны.

Найдите корень из полученного числа.

Умножьте результат на половину от суммы оснований.

  • S – искомая площадь трапеции.
  • a, b – основания трапеции.
  • c, d – боковые стороны.

Средняя линия трапеции

Средняя линия – отрезок, соединяющий середины боковых сторон трапеции.

Формулы определения длины средней линии трапеции:

m = a + b
2

2. Формула определения длины средней линии через площадь и высоту:

Читайте также:  Обучение работников способам защиты от опасностей
m = S
h

Через длины оснований и высоту

Чему равна площадь трапеции если известны основания a и b, а также высота h?

Формула

Пример

Если у трапеции основание a = 3 см, основание b = 6 см, а высота h = 4 см, то её площадь:

S = ½ ⋅ (3 + 6) ⋅ 4 = 36 / 2 = 18 см²

Площадь трапеции через перпендикулярные диагонали

Формула для нахождения площади трапеции через перпендикулярные диагонали: <2>d_1 cdot d_2> , где d1, d2 — диагонали трапеции (перпендикулярные).

Как вычислить площадь равнобедренной трапеции через четыре стороны

Отнимите от большего основания трапеции меньшее и поделите результат на два.

Найдите квадрат полученного числа и отнимите его от квадрата боковой стороны.

Найдите корень из результата.

Умножьте полученное число на сумму оснований и поделите на два.

  • S — искомая площадь трапеции.
  • a, b — основания трапеции.
  • c, d — боковые стороны (напомним, в равнобедренной трапеции они равны).

Таблица с формулами площади трапеции

В зависимости от известных исходных данных и вида трапеции, площадь трапеции можно вычислить по различным формулам.

эскиз формула
Площадь для всех видов трапеции
1 высота и два основания
2 высота и средняя линия
3 четыре стороны
4 диагонали и угол между ними
5 основания и углы при одном из оснований
Площадь равнобедренной трапеции
6 стороны
7 основание, боковые стороны и угол при основании
8 основание, боковые стороны и угол при основании
9 основания и углы при одном из оснований
10 диагонали и угол между ними
11 средняя линия, боковые стороны и углы между основанием и боковыми сторонами
12 радиус вписанной окружности и угол при основании
13 основания и радиус вписанной окружности
14 основания и углы при одном из оснований
15 основания и боковые стороны
16 основания и средняя линия

Найти площадь равнобедренной трапеции, зная радиус вписанной окружности и угол

Через среднюю линию, боковую сторону и угол при основании

Чему равна площадь равнобедренной трапеции если средняя линия m, боковая сторона с, a угол при основании α?

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Пусть a и b основания трапеции. доказать что отрезок, соединяющий середины её диагоналей равен 1/2 * | а – б|?

Возьмем трапецию ABCD

Определим точку М как середину диагонали АС, точку N как середину диагонали BD. Тогда средняя линия трапеции KF будет проходить через точки M и N.

Вспомним свойство средней линии трапеции: средняя линия трапеции является параллельной основаниям и равняется полусумме их длин.

Рассмотрим треугольник ACD:

Рассмотрим треугольник BCD

Выразим MN через отрезки MF и NF:

Подставим в формулу значения отрезков MF и NF:

MN = AD/2-BC/2 = (AD-BC)/2

Площадь трапеции через основания и два угла

  • Параллельные стороны называются основаниями трапеции.
  • Две другие стороны называются боковыми сторонами.
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
  • Расстояние между основаниями называется высотой трапеции.
  • Трапеция, у которой боковые стороны равны, называется равнобокой (или равнобедренной)
  • Трапеция, один из углов которой прямой, называется прямоугольной.
  • Средняя линия трапеции параллельна основаниям и равна их полусумме.
  • Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.
  • У равнобокой трапеции углы при основании равны.
  • У равнобокой трапеции диагонали равны.
  • Если трапеция равнобокая, то около нее можно описать окружность.
  • Если сумма оснований трапеции равна сумме боковых сторон, то в нее можно вписать окружность.
  • В трапеции середины оснований, точка пересечения диагоналей и продолжения боковых сторон находятся на одной прямой.

Источник

Оцените статью
Разные способы