Меню

Все способы нахождения нод

Нахождение НОД по алгоритму Евклида и с помощью разложения на простые множители.

Эта статья про нахождение наибольшего общего делителя (НОД) двух и большего количества чисел. Сначала рассмотрим алгоритм Евклида, он позволяет находить НОД двух чисел. После этого остановимся на методе, позволяющем вычислять НОД чисел как произведение их общих простых множителей. Дальше разберемся с нахождением наибольшего общего делителя трех и большего количества чисел, а также приведем примеры вычисления НОД отрицательных чисел.

Навигация по странице.

Алгоритм Евклида для нахождения НОД

В статье наибольший общий делитель (НОД), определение, примеры, свойства НОД мы сформулировали и доказали алгоритм Евклида. Алгоритм Евклида является универсальным способом, позволяющим вычислять наибольший общий делитель двух положительных целых чисел.

Напомним суть алгоритма Евклида. Для нахождения наибольшего общего делителя двух чисел a и b ( a и b – целые положительные числа, причем a больше или равно b ) последовательно выполняется деление с остатком, которое дает ряд равенств вида

Деление заканчивается, когда rk+1=0 , при этом rk=НОД(a, b) .

Рассмотрим примеры нахождения НОД по алгоритму Евклида.

Найдите наибольший общий делитель чисел 64 и 48 .

Воспользуемся алгоритмом Евклида. В этом примере a=64 , b=48 .

Делим 64 на 48 , получаем 64:48=1 (ост. 16) (при необходимости смотрите правила и примеры деления с остатком), что можно записать в виде равенства 64=48·1+16 , то есть, q1=1 , r1=16 .

Теперь делим b на r1 , то есть, 48 делим на 16 , получаем 48:16=3 , откуда имеем 48=16·3 . Здесь q2=3 , а r2=0 , так как 48 делится на 16 без остатка. Мы получили r2=0 , поэтому это был последний шаг алгоритма Евклида, и r1=16 является искомым наибольшим общим делителем чисел 64 и 48 .

Покажем решение еще одного примера, но теперь обойдемся без подробных пояснений шагов алгоритма Евклида.

Чему равен НОД чисел 111 и 432 ?

Из свойств наибольшего общего делителя мы знаем, что НОД(111, 432)=НОД(432, 111) . Воспользуемся алгоритмом Евклида для нахождения НОД(432, 111) .

Разделив 432 на 111 , получаем равенство 432=111·3+99 .

На следующем шаге делим 111 на 99 , имеем 111=99·1+12 .

Деление 99 на 12 дает равенство 99=12·8+3 .

А 12 на 3 делится без остатка и 12=3·4 . Поэтому это последний шаг алгоритма Евклида, и НОД(432, 111)=3 , следовательно, и искомый наибольший общий делитель чисел 111 и 432 равен 3 .

Для закрепления материала найдем с помощью алгоритма Евклида наибольший общий делитель чисел 661 и 113 .

Найдите НОД(661, 113) по алгоритму Евклида.

Выполняем деление: 661=113·5+96 ; 113=96·1+17 ; 96=17·5+11 ; 17=11·1+6 ; 11=6·1+5 ; 6=5·1+1 , наконец, 5=1·5 . Таким образом, НОД(661, 113)=1 , то есть, 661 и 113 – взаимно простые числа.

Заметим, что если бы мы с самого начала обратились к таблице простых чисел, то выяснили бы, что числа 661 и 113 – простые, откуда можно было бы сразу сказать, что их наибольший общий делитель равен 1 .

Нахождение НОД с помощью разложения чисел на простые множители

Рассмотрим еще один способ нахождения НОД. Наибольший общий делитель может быть найден по разложениям чисел на простые множители. Сформулируем правило: НОД двух целых положительных чисел a и b равен произведению всех общих простых множителей, находящихся в разложениях чисел a и b на простые множители.

Приведем пример для пояснения правила нахождения НОД. Пусть нам известны разложения чисел 220 и 600 на простые множители, они имеют вид 220=2·2·5·11 и 600=2·2·2·3·5·5 . Общими простыми множителями, участвующими в разложении чисел 220 и 600 , являются 2 , 2 и 5 . Следовательно, НОД(220, 600)=2·2·5=20 .

Таким образом, если разложить числа a и b на простые множители и найти произведение всех их общих множителей, то этим будет найден наибольший общий делитель чисел a и b .

Рассмотрим пример нахождения НОД по озвученному правилу.

Найдите наибольший общий делитель чисел 72 и 96 .

Разложим на простые множители числа 72 и 96 :

Читайте также:  Как решать примеры длинным способом

То есть, 72=2·2·2·3·3 и 96=2·2·2·2·2·3 . Общими простыми множителями являются 2 , 2 , 2 и 3 . Таким образом, НОД(72, 96)=2·2·2·3=24 .

В заключение этого пункта заметим, что справедливость приведенного правила нахождения НОД следует из свойства наибольшего общего делителя, которое утверждает, что НОД(m·a1, m·b1)=m·НОД(a1, b1) , где m – любое целое положительное число.

Нахождение НОД трех и большего количества чисел

Нахождение наибольшего общего делителя трех и большего количества чисел может быть сведено к последовательному нахождению НОД двух чисел. Мы об этом упоминали, при изучении свойств НОД. Там мы сформулировали и доказали теорему: наибольший общий делитель нескольких чисел a1, a2, …, ak равен числу dk , которое находится при последовательном вычислении НОД(a1, a2)=d2 , НОД(d2, a3)=d3 , НОД(d3, a4)=d4 , …, НОД(dk-1, ak)=dk .

Давайте разберемся, как выглядит процесс нахождения НОД нескольких чисел, рассмотрев решение примера.

Найдите наибольший общий делитель четырех чисел 78 , 294 , 570 и 36 .

Сначала по алгоритму Евклида определим наибольший общий делитель d2 двух первых чисел 78 и 294 . При делении получаем равенства 294=78·3+60 ; 78=60·1+18 ; 60=18·3+6 и 18=6·3 . Таким образом, d2=НОД(78, 294)=6 .

Теперь вычислим d3=НОД(d2, a3)=НОД(6, 570) . Опять применим алгоритм Евклида: 570=6·95 , следовательно, d3=НОД(6, 570)=6 .

Осталось вычислить d4=НОД(d3, a4)=НОД(6, 36) . Так как 36 делится на 6 , то d4=НОД(6, 36)=6 .

Таким образом, наибольший общий делитель четырех данных чисел равен d4=6 , то есть, НОД(78, 294, 570, 36)=6 .

НОД(78, 294, 570, 36)=6 .

Разложение чисел на простые множители также позволяет вычислять НОД трех и большего количества чисел. В этом случае наибольший общий делитель находится как произведение всех общих простых множителей данных чисел.

Вычислите НОД чисел из предыдущего примера, используя их разложения на простые множители.

Разложим числа 78 , 294 , 570 и 36 на простые множители, получаем 78=2·3·13 , 294=2·3·7·7 , 570=2·3·5·19 , 36=2·2·3·3 . Общими простыми множителями всех данных четырех чисел являются числа 2 и 3 . Следовательно, НОД(78, 294, 570, 36)=2·3=6 .

НОД(78, 294, 570, 36)=6 .

Нахождение НОД отрицательных чисел

Если одно, несколько или все числа, наибольший делитель которых нужно найти, являются отрицательными числами, то их НОД равен наибольшему общему делителю модулей этих чисел. Это связано с тем, что противоположные числа a и −a имеют одинаковые делители, о чем мы говорили при изучении свойств делимости.

Найдите НОД отрицательных целых чисел −231 и −140 .

Модуль числа −231 равен 231 , а модуль числа −140 равен 140 , и НОД(−231, −140)=НОД(231, 140) . Алгоритм Евклида дает нам следующие равенства: 231=140·1+91 ; 140=91·1+49 ; 91=49·1+42 ; 49=42·1+7 и 42=7·6 . Следовательно, НОД(231, 140)=7 . Тогда искомый наибольший общий делитель отрицательных чисел −231 и −140 равен 7 .

Определите НОД трех чисел −585 , 81 и −189 .

При нахождении наибольшего общего делителя отрицательные числа можно заменить их абсолютными величинами, то есть, НОД(−585, 81, −189)= НОД(585, 81, 189) . Разложения чисел 585 , 81 и 189 на простые множители имеют соответственно вид 585=3·3·5·13 , 81=3·3·3·3 и 189=3·3·3·7 . Общими простыми множителями этих трех чисел являются 3 и 3 . Тогда НОД(585, 81, 189)=3·3=9 , следовательно, НОД(−585, 81, −189)=9 .

Источник

НОД, НОД

НОД — это наибольший общий делитель.

НОК — это наименьшее общее кратное.

Определения:

  1. Наибольшим общим делителем чисел a и b называется наибольшее число, на которое a и b делятся без остатка.
  2. Наименьшее общее кратное (НОК) двух целых чиселm и n есть наименьшее натуральное число , которое делится на m и n без остатка

Способы нахождения НОД двух чисел:

1 способ (следует из определения): Метод полного перебора для нахождения наибольшего общего делителя (НОД) натуральных чисел.

  1. Выписываем все делители числа а;
  2. Выписываем все делители числа b;
  3. Выбираем среди них общие делители;
  4. Среди общих делителей выбираем самое большое число – это и есть НОД(a, b).

2 способ : Метод перебора делителей меньшего числа для нахождения наибольшего общего делителя (НОД) натуральных чисел.

  1. Найти делители меньшего из данных чисел.
  2. Найти, начиная с большего, тот из выписанных делителей, который является также делителем другого числа.
  3. Записать найденное число – НОД.
Читайте также:  Какими двумя способами можно получить гидроксид кальция

3 способ; Метод нахождения наибольшего общего делителя (НОД) натуральных чисел с помощью разложения на множители.

  1. Находим разложение чисел на простые множители.
  2. Подчеркиваем общие числа.
  3. Находим произведение подчеркнутых чисел у одного числа.
  4. Записываем ответ.

4 способ: Алгоритм Евклида нахождения наибольшего общего делителя (НОД) двух натуральных чисел вычитанием.

  1. Из большего числа вычитается меньшее.
  2. Если получается 0, то числа равны друг другу и являются наибольшим общим делителем.
  3. Если результат вычитания не равен 0, то большее число заменяется на результат вычитания.
  4. Переход к пункту 1.

Способы нахождения НОК двух чисел:

1 способ: Метод перебора
1. Выписываем в строчку кратные для каждого из чисел, пока не найдётся кратное, одинаковое для обоих чисел.

2 способ; Метод нахождения наибольшего общего делителя (НОД) натуральных чисел с помощью разложения на множители

  1. Разложить данные числа на простые множители.
  2. Выписать в строчку множители, входящие в разложение самого большого из чисел, а под ним — разложение остальных чисел.
  3. Подчеркнуть в разложении меньшего числа множители, которые не вошли в разложение бóльшего числа и добавить эти множители в разложение большего числа.
  4. Полученное произведение записать в ответ.

Свойства наибольшего общего делителя:

  1. НОД(a, b) = НОД(b, a)
  2. НОД(a, b) = НОД(-a, b)
  3. НОД(a, b) = НОД(|a|,|b|)
  4. НОД(a, 0) = |a|
  5. НОД(a, к • a) = |a|, при любом к ∈ Z
  6. НОД(a, НОД(b, с)) = НОД(НОД(a, b), c)

Свойства наименьшего общего кратного:

  1. НОК(a, b) = НОК(b, a)
  2. НОД(a, b) = НОД(-a, b)
  3. НОД(a, b) = НОД(|a|,|b|)
  4. НОК(a, НОК(b, с)) = НОК(НОК(a, b), c)

Источник

Нахождение НОД по алгоритму Евклида и с помощью разложения на простые множители

Рассмотрим два основных метода нахождения НОД двумя основными способами: с использованием алгоритма Евклида и путем разложения на простые множители. Применим оба метода для двух, трех и большего количества чисел.

Алгоритм Евклида для нахождения НОД

Алгоритм Евклида позволяет с легкостью вычислить наибольший общий делитель для двух положительных чисел. Формулировки и доказательство алгоритма Евклида мы привели в разделе «Наибольший общий делитель: определитель, примеры».

Суть алгоритма заключается в том, чтобы последовательно проводить деление с остатком, в ходе которого получается ряд равенств вида:

a = b · q 1 + r 1 , 0 r 1 b b = r 1 · q 2 + r 2 , 0 r 2 r 1 r 1 = r 2 · q 3 + r 3 , 0 r 3 r 2 r 2 = r 3 · q 4 + r 4 , 0 r 4 r 3 ⋮ r k — 2 = r k — 1 · q k + r k , 0 r k r k — 1 r k — 1 = r k · q k + 1

Мы можем закончить деление тогда, когда r k + 1 = 0 , при этом r k = НОД ( a , b ) .

Найдите наибольший общий делитель чисел 64 и 48 .

Решение

Введем обозначения: a = 64 , b = 48 .

На основе алгоритма Евклида проведем деление 64 на 48 .

Получим 1 и остаток 16 . Получается, что q 1 = 1 , r 1 = 16 .

Вторым шагом разделим 48 на 16 , получим 3 . То есть q 2 = 3 , а r 2 = 0 . Таким образом число 16 – это наибольший общий делитель для чисел из условия.

Ответ: НОД ( 64 , 48 ) = 16 .

Чему равен НОД чисел 111 и 432 ?

Решение

Делим 432 на 111 . Согласно алгоритму Евклида получаем цепочку равенств 432 = 111 · 3 + 99 , 111 = 99 · 1 + 12 , 99 = 12 · 8 + 3 , 12 = 3 · 4 .

Таким образом, наибольший общий делитель чисел 111 и 432 – это 3 .

Ответ: НОД ( 111 , 432 ) = 3 .

Найдите наибольший общий делитель чисел 661 и 113 .

Решение

Проведем последовательно деление чисел и получим НОД ( 661 , 113 ) = 1 . Это значит, что 661 и 113 – это взаимно простые числа. Мы могли выяснить это до начала вычислений, если бы обратились к таблице простых чисел.

Ответ: НОД ( 661 , 113 ) = 1 .

Нахождение НОД с помощью разложения чисел на простые множители

Для того, чтобы найти наибольший общий делитель двух чисел методом разложения на множители, необходимо перемножить все простые множители, которые получаются при разложении этих двух чисел и являются для них общими.

Если мы разложим числа 220 и 600 на простые множители, то получим два произведения: 220 = 2 · 2 · 5 · 11 и 600 = 2 · 2 · 2 · 3 · 5 · 5 . Общими в этих двух произведениях будут множители 2 , 2 и 5 . Это значит, что НОД ( 220 , 600 ) = 2 · 2 · 5 = 20 .

Найдите наибольший общий делитель чисел 72 и 96 .

Решение

Найдем все простые множители чисел 72 и 96 :

72 36 18 9 3 1 2 2 2 3 3

96 48 24 12 6 3 1 2 2 2 2 2 3

Общими для двух чисел простые множители: 2 , 2 , 2 и 3 . Это значит, что НОД ( 72 , 96 ) = 2 · 2 · 2 · 3 = 24 .

Ответ: НОД ( 72 , 96 ) = 24 .

Правило нахождения наибольшего общего делителя двух чисел основано на свойствах наибольшего общего делителя, согласно которому НОД ( m · a 1 , m · b 1 ) = m · НОД ( a 1 , b 1 ) , где m – любое целое положительное число.

Нахождение НОД трех и большего количества чисел

Независимо от количества чисел, для которых нам нужно найти НОД, мы будем действовать по одному и тому же алгоритму, который заключается в последовательном нахождении НОД двух чисел. Основан этот алгоритм на применении следующей теоремы: НОД нескольких чисел a 1 , a 2 , … , a k равен числу d k , которое находится при последовательном вычислении НОД ( a 1 , a 2 ) = d 2 , НОД ( d 2 , a 3 ) = d 3 , НОД ( d 3 , a 4 ) = d 4 , … , НОД ( d k — 1 , a k ) = d k .

Найдите наибольший общий делитель четырех чисел 78 , 294 , 570 и 36 .

Решение

Введем обозначения: a 1 = 78 , a 2 = 294 , a 3 = 570 , a 4 = 36 .

Начнем с того, что найдем НОД чисел 78 и 294 : d 2 = НОД ( 78 , 294 ) = 6 .

Теперь приступим к нахождению d 3 = НОД ( d 2 , a 3 ) = НОД ( 6 , 570 ) . Согласно алгоритму Евклида 570 = 6 · 95 . Это значит, что d 3 = НОД ( 6 , 570 ) = 6 .

Найдем d 4 = НОД ( d 3 , a 4 ) = НОД ( 6 , 36 ) . 36 делится на 6 без остатка. Это позволяет нам получить d 4 = НОД ( 6 , 36 ) = 6 .

d 4 = 6 , то есть, НОД ( 78 , 294 , 570 , 36 ) = 6 .

Ответ: НОД ( 78 , 294 , 570 , 36 ) = 6 .

А теперь давайте рассмотрим еще один способ вычисления НОД для тех и большего количества чисел. Мы можем найти НОД, перемножив все общие простые множители чисел.

Вычислите НОД чисел 78 , 294 , 570 и 36 .

Решение

Произведем разложение данных чисел на простые множители: 78 = 2 · 3 · 13 , 294 = 2 · 3 · 7 · 7 , 570 = 2 · 3 · 5 · 19 , 36 = 2 · 2 · 3 · 3 .

Для всех четырех чисел общими простыми множителями будут числа 2 и 3 .

Получается, что НОД ( 78 , 294 , 570 , 36 ) = 2 · 3 = 6 .

Ответ: НОД ( 78 , 294 , 570 , 36 ) = 6 .

Нахождение НОД отрицательных чисел

Если нам приходится иметь дело с отрицательными числами, то для нахождения наибольшего общего делителя мы можем воспользоваться модулями этих чисел. Мы можем так поступить, зная свойство чисел с противоположными знаками: числа n и — n имеют одинаковые делители.

Найдите НОД отрицательных целых чисел − 231 и − 140 .

Решение

Для выполнения вычислений возьмем модули чисел, данных в условии. Это будут числа 231 и 140 . Запишем это кратко: НОД ( − 231 , − 140 ) = НОД ( 231 , 140 ) . Теперь применим алгоритм Евклида для нахождения простых множителей двух чисел: 231 = 140 · 1 + 91 ; 140 = 91 · 1 + 49 ; 91 = 49 · 1 + 42 ; 49 = 42 · 1 + 7 и 42 = 7 · 6 . Получаем, что НОД ( 231 , 140 ) = 7 .

А так как НОД ( − 231 , − 140 ) = НОД ( 231 , 140 ) , то НОД чисел − 231 и − 140 равен 7 .

Ответ: НОД ( − 231 , − 140 ) = 7 .

Определите НОД трех чисел − 585 , 81 и − 189 .

Решение

Заменим отрицательные числа в приведенном перечне на их абсолютные величины, получим НОД ( − 585 , 81 , − 189 ) = НОД ( 585 , 81 , 189 ) . Затем разложим все данные числа на простые множители: 585 = 3 · 3 · 5 · 13 , 81 = 3 · 3 · 3 · 3 и 189 = 3 · 3 · 3 · 7 . Общими для трех чисел являются простые множители 3 и 3 . Получается , что НОД ( 585 , 81 , 189 ) = НОД ( − 585 , 81 , − 189 ) = 9 .

Ответ: НОД ( − 585 , 81 , − 189 ) = 9 .

Источник

Adblock
detector