- Все способы измерения количества информации
- Все способы измерения количества информации
- Производные единицы измерения количества информации
- Методы измерения количества информации
- Алфавитный подход к измерению количества информации
- Вероятностный подход к измерению количества информации
- Задача 1.
- Задача 2.
- Задача 3.
- Задача 4.
- Задача 5.
- Задача 6.
- Задача 7.
- Задача 8.
- Методы измерения количества информации
- Вероятностный метод
- Алфавитный метод измерения количества информации
- Единицы измерения
- Измерение информации
- Что такое измерение информации
- Алфавитный подход к измерению информации
- Бит, байт и другие единицы измерения
- Определение количества информации
- Что мы узнали?
Все способы измерения количества информации
Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации.
Вопрос: «Как измерить информацию?» очень непростой. Ответ на него зависит от того, что понимать под информацией. Но поскольку определять информацию можно по-разному, то и способы измерения тоже могут быть разными.
Содержательный подход к измерению информации.
Для человека информация — это знания человека. Рассмотрим вопрос с этой точки зрения.
Получение новой информации приводит к расширению знаний. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.
Отсюда следует вывод, что сообщение информативно (т.е. содержит ненулевую информацию), если оно пополняет знания человека. Например, прогноз погоды на завтра — информативное сообщение, а сообщение о вчерашней погоде неинформативно, т.к. нам это уже известно.
Нетрудно понять, что информативность одного и того же сообщения может быть разной для разных людей. Например: «2×2=4» информативно для первоклассника, изучающего таблицу умножения, и неинформативно для старшеклассника.
Но для того чтобы сообщение было информативно оно должно еще быть понятно. Быть понятным, значит быть логически связанным с предыдущими знаниями человека. Определение «значение определенного интеграла равно разности значений первообразной подынтегральной функции на верхнем и на нижнем пределах», скорее всего, не пополнит знания и старшеклассника, т.к. оно ему не понятно. Для того, чтобы понять данное определение, нужно закончить изучение элементарной математики и знать начала высшей.
Получение всяких знаний должно идти от простого к сложному. И тогда каждое новое сообщение будет в то же время понятным, а значит, будет нести информацию для человека.
Сообщение несет информацию для человека, если содержащиеся в нем сведения являются для него новыми и понятными.
Алфавитный подход к измерению информации.
А теперь познакомимся с другим способом измерения информации. Этот способ не связывает количество информации с содержанием сообщения, и называется он алфавитным подходом.
При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.
Все множество используемых в языке символов будем традиционно называть алфавитом. Обычно под алфавитом понимают только буквы, но поскольку в тексте могут встречаться знаки препинания, цифры, скобки, то мы их тоже включим в алфавит. В алфавит также следует включить и пробел, т.е. пропуск между словами.
Полное количество символов алфавита принято называть мощностью алфавита. Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54.
При алфавитном подходе к измерению информации количество информации зависит не от содержания, а от размера текста и мощности алфавита.
При использовании двоичной системы (алфавит состоит из двух знаков: 0 и 1) каждый двоичный знак несет 1 бит информации. Интересно, что сама единица измерения информации «бит» получила свое название от английского сочетания «binary digit» — «двоичная цифра».
1 бит — это минимальная единица измерения информации!
Один символ алфавита «весит» 8 бит. Причем 8 бит информации — это настолько характерная величина, что ей даже присвоили свое название — байт.
Сегодня очень многие люди для подготовки писем, документов, статей, книг и пр. используют компьютерные текстовые редакторы. Компьютерные редакторы, в основном, работают с алфавитом размером 256 символов.
В любой системе единиц измерения существуют основные единицы и производные от них.
Для измерения больших объемов информации используются следующие производные от байта единицы:
Источник
Все способы измерения количества информации
Для информации существуют свои единицы измерения информации. Если рассматривать сообщения информации как последовательность знаков, то их можно представлять битами, а измерять в байтах, килобайтах, мегабайтах, гигабайтах, терабайтах и петабайтах.
Давайте разберемся с этим, ведь нам придется измерять объем памяти и быстродействие компьютера.
Единицей измерения количества информации является бит – это наименьшая (элементарная) единица.
Байт – основная единица измерения количества информации.
Байт – довольно мелкая единица измерения информации. Например, 1 символ – это 1 байт.
Производные единицы измерения количества информации
1 килобайт (Кб)=1024 байта =2 10 байтов
1 мегабайт (Мб)=1024 килобайта =2 10 килобайтов=2 20 байтов
1 гигабайт (Гб)=1024 мегабайта =2 10 мегабайтов=2 30 байтов
1 терабайт (Гб)=1024 гигабайта =2 10 гигабайтов=2 40 байтов
Запомните, приставка КИЛО в информатике – это не 1000, а 1024, то есть 2 10 .
Методы измерения количества информации
Итак, количество информации в 1 бит вдвое уменьшает неопределенность знаний. Связь же между количеством возможных событий N и количеством информации I определяется формулой Хартли:
Алфавитный подход к измерению количества информации
При этом подходе отвлекаются от содержания (смысла) информации и рассматривают ее как последовательность знаков определенной знаковой системы. Набор символов языка, т.е. его алфавит можно рассматривать как различные возможные события. Тогда, если считать, что появление символов в сообщении равновероятно, по формуле Хартли можно рассчитать, какое количество информации несет в себе каждый символ:
Вероятностный подход к измерению количества информации
Этот подход применяют, когда возможные события имеют различные вероятности реализации. В этом случае количество информации определяют по формуле Шеннона:
I – количество информации,
N – количество возможных событий,
Pi – вероятность i-го события.
Задача 1.
Шар находится в одной из четырех коробок. Сколько бит информации несет сообщение о том, в какой именно коробке находится шар.
Имеется 4 равновероятных события (N=4).
По формуле Хартли имеем: 4=2 i . Так как 2 2 =2 i , то i=2. Значит, это сообщение содержит 2 бита информации.
Задача 2.
Чему равен информационный объем одного символа русского языка?
В русском языке 32 буквы (буква ё обычно не используется), то есть количество событий будет равно 32. Найдем информационный объем одного символа. I=log2 N=log2 32=5 битов (2 5 =32).
Примечание. Если невозможно найти целую степень числа, то округление производится в большую сторону.
Задача 3.
Чему равен информационный объем одного символа английского языка?
Задача 4.
Световое табло состоит из лампочек, каждая из которых может находиться в одном из двух состояний (“включено” или “выключено”). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 50 различных сигналов?
С помощью N лампочек, каждая из которых может находиться в одном из двух состояний, можно закодировать 2 N сигналов.
2 5 6 , поэтому пяти лампочек недостаточно, а шести хватит. Значит, нужно 6 лампочек.
Задача 5.
Метеостанция ведет наблюдения за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100, которое записывается при помощи минимально возможного количества битов. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений.
В данном случае алфавитом является множество чисел от 0 до 100, всего 101 значение. Поэтому информационный объем результатов одного измерения I=log2101. Но это значение не будет целочисленным, поэтому заменим число 101 ближайшей к нему степенью двойки, большей, чем 101. это число 128=2 7 . Принимаем для одного измерения I=log2128=7 битов. Для 80 измерений общий информационный объем равен 80*7 = 560 битов = 70 байтов.
Задача 6.
Определите количество информации, которое будет получено после подбрасывания несимметричной 4-гранной пирамидки, если делают один бросок.
Пусть при бросании 4-гранной несимметричной пирамидки вероятности отдельных событий будут равны: p1=1/2, p2=1/4, p3=1/8, p4=1/8.
Тогда количество информации, которое будет получено после реализации одного из них, можно вычислить по формуле Шеннона:
I = -[1/2 * log2(1/2) + 1/4 * log2(1/4) + 1/8 * log(1/8) + 1/8 * log(1/8)] = 14/8 битов = 1,75 бита.
Задача 7.
В книге 100 страниц; на каждой странице — 20 строк, в каждой строке — 50 символов. Определите объем информации, содержащийся в книге.
Задача 8.
Оцените информационный объем следующего предложения:
Тяжело в ученье – легко в бою!
Так как каждый символ кодируется одним байтом, нам только нужно подсчитать количество символов, но при этом не забываем считать знаки препинания и пробелы. Всего получаем 30 символов. А это означает, что информационный объем данного сообщения составляет 30 байтов или 30 * 8 = 240 битов.
Источник
Методы измерения количества информации
В информационном обществе основным продуктом определяют информацию, и она окружает нас везде, языком обывателя это сведения и данные, которые мы получаем при помощи органов чувств. В теории информатики осуществляют измерение количества информации. Каким образом, это происходит?
В теории изучается два метода для измерения количественного показателя сведений:
Они отличаются друг от друга, поэтому рассмотрим каждый подробнее.
Вероятностный метод
Заключается в том, что не все события могут произойти, а также отличается частота их появления. С какой вероятностью появляется некоторое явление, является величиной, которая показывает, как часто появляется это событие при одних условиях. Вероятность обозначается p и она варьируется в пределах от 0 до 1. Где 0 — это невозможно явление, 1 — это событие возможно, если вероятность наступления и отсутствия равна, тогда р=0,5.
Клод Шеннон основал теорию чем сделал настоящий прорыв в истории развития информатики, а именно он предложил следующую форму для определения количества сведений и равновероятных событий.
Шеннон говорил о том, что оно более информативно, в случае, когда оно было более ожидаемо. Для применения его подхода нужно более подробно описать более вероятное явление. В повседневной жизни мы всегда более подробно описываем, то событие, которое наиболее вероятно для наступления. Остальное мы просто не берем во внимание.
Алфавитный метод измерения количества информации
Алфавитный подход заключается в определении количественной информации, которая составляет текстовое сообщение, составленное из символов одного алфавита.
Алфавит в этом случае – знаковые обозначения, используемые в языке для передачи сведений, данных и пр. К обозначениям относятся скобки, знаки, цифры и буквы.
В этом подходе также используется такое понятие как, мощность алфавита – количественная составляющая алфавита.
Вычислить его можно по формуле N=2 i , где i – информационный вес символа.
Единицы измерения
Весь информационный массив измеряется в следующих величинах бит, байт, килобайт, мегабайт и т.д.
Наименьшая единица – это бит. В 1 байте 8 бит.
1 бит – это количество сведений, данных и пр., которое требуется чтобы определить одно равновероятное событие из нескольких.
Информацию рассматривают с точки зрения последовательности длинной в 1 байт.
1 Кб = 1024 б = 2 10 б
1 Мб = 1024 Кб = 2 10 Кб
1 Гб = 1024 Мб = 2 10 Мб
1 Тб = 1024 Гб = 2 10 Гб
Делая вывод, говорим о том, что подходы к измерению информации разные, также они дадут разные результаты. Чем более вероятно явление, тем больше информации. В алфавитном же подходе, зависит от объема текста, в котором рассчитывается объем сведений и количественного показателя символов в алфавите.
Источник
Измерение информации
Средняя оценка: 4.4
Всего получено оценок: 408.
Средняя оценка: 4.4
Всего получено оценок: 408.
Как и любую другую физическую величину, информацию можно измерить. Существуют разные подходы к измерению информации. Один из таких подходов рассматривается в курсе информатики за 7 класс.
Что такое измерение информации
При измерении информации следует учитывать как объем передаваемого сообщения, так и его смысловую нагрузку. В связи с этим в информатике существуют разные подходы к измерению информации.
Алфавитный подход к измерению информации
Способы оценки величины информации могут учитывать или не учитывать смысла информационного сообщения.
Один из способов нахождения количества информации основан на определении веса каждого символа в тексте сообщения. При таком подходе объем сообщения зависит от количества знаков в тексте, чем больше тест, тем больше весит информационное сообщение. При этом абсолютно не важно, что написано, какой смысл несет сообщение. Так как определение объема информации привязано к текстовым единицам: буквам, цифрам, знакам препинания, то такой подход к измерению информации получил название алфавитного.
Вес отдельного знака зависит от их количества в алфавите. Число символов алфавита называют мощностью (N). Например, мощность алфавита английского языка по числу символов равно 26, русского языка 33. Но на самом деле, при написании текста используются и прописные и строчные буквы, а также знаки препинания, пробелы и специальные невидимые символы, обозначающие конец абзаца и перевод к новой строке. Поэтому имеют дело с мощностью 128 или в расширенной версии 256 символов.
Бит, байт и другие единицы измерения
Для двоичного алфавита, состоящего из двух символов – нуля и единицы, мощность алфавита будет составлять 2. Вес символа бинарного алфавита выбран в качестве минимальной единицы информации и называется «бит». Происхождение термина «бит» исходит от англоязычного слова «binary», что означает двоичный.
Восемь бит образуют байт.
Название «байт» было придумано в 1956 году В. Бухгольцем при проектировании первого суперкомпьютера. Слово «byte» было получено путем замены второй буквы в созвучном слове «bite», чтобы избежать путаницы с уже имеющимся термином «bit».
На практике величина объема информации выражает в более крупных единицах: килобайтах, терабайтах, мегабайтах.
Следует запомнить, что килобайт равен 1024 байта, а не 1000. Как, например, 1 километр равен 1000 метрам. Эта разница получается за счет того, 1 байт равен 8 битам, а не 10.
Для того, чтобы легче запомнить единицы измерения, следует воспользоваться таблицей степени двойки.
Таблица степеней двойки
Показатель степени
Значение
То есть, 2 3 = 8 – это 1 байт, состоящий из 8 бит, 2 10 = 1024 это 1 килобайт, 2 20 = 1048576 представляет собой 1 мегабайт, 2 30 = 1 гигабайт, 2 40 = 1 терабайт.
Определение количества информации
Вес символа (i) и мощность алфавита (N) связаны между собой соотношением: 2 i = N.
Так, алфавит мощностью в 256 символов имеет вес каждого символа в 8 бит, то есть один байт. Это означает, что на каждую букву приходится по байту. В таком случае, нетрудно определить, сколько весит весь кодируемый текст сообщения. Для этого достаточно вес символа алфавита умножить на количество символов в тексте. При подсчете количества символов в сообщении следует не забывать, что знаки препинания, а также пробелы – это тоже символы и они весят столько же, сколько и буквы.
Например, при условии, что каждая буква кодируется одним байтом, для текста, «Ура! Наступили каникулы.» информационный объем определяется умножением 8 битов на 24 символа (без учета кавычек). Произведение 8 * 24 = 192 бита – столько весит кодируемая фраза. В переводе на байты: 192 бита разделить на 8 получим 24 байта.
Эта схема работает и в обратной задаче. Пусть информационное сообщение составляет 2 килобайта и состоит из 512 символов. Необходимо определить мощность алфавита, используемого для кодирования сообщения.
Решение: Сначала целесообразно 2 килобайта перевести в биты: 2 * 1024 = 2048 (бит). Затем объем информационного сообщения делят на количество символов: 2048 / 512 = 4 (бит), получают вес одного символа. Для определения мощности алфавита 2 возводят в степень 4 и получают 16 – это мощность алфавита, то есть количество символов, используемых для кодирования текста.
Что мы узнали?
Одним из способов определения величины информационного сообщения является алфавитный подход, в котором любой знак в тексте имеет некоторый вес, обусловленный мощностью алфавита. Минимальной единицей измерения информации является бит. Информацию можно также измерять в байтах, килобайтах, мегабайтах.
Источник