Возможности решения задач разными способами

Решение задач разными способами – средство повышения интереса к математике.
методическая разработка по математике (1 класс) по теме

Среди всех мотивов учебной деятельности самым действенным является познавательный интерес, возникающий в процессе обучения. Он не только активизирует умственную деятельность в данный момент, но и направляет ее к последующему решению различных задач.

Устойчивый познавательный интерес формируется разными средствами. Одним из них является решение задач разными способами.

Скачать:

Вложение Размер
Решение задач разными способами 28.24 КБ

Предварительный просмотр:

Войнова Светлана Юрьевна, учитель начальных классов,

МОУ «СОШ №56 с углубленным изучением отдельных предметов»

Решение задач разными способами – средство повышения интереса к математике.

Люди научились считать 25-30 тысяч лет тому назад. О значении математики как предмета школьного преподавания М.В.Ломоносов в записке о преподавании физики, химии и математики пишет так:

«А математику уже затем учить следует, что она ум в порядок приводит».

Среди всех мотивов учебной деятельности самым действенным является познавательный интерес, возникающий в процессе обучения. Он не только активизирует умственную деятельность в данный момент, но и направляет ее к последующему решению различных задач.

Устойчивый познавательный интерес формируется разными средствами. Одним из них является решение задач разными способами.

Большие возможности для развития интереса учащихся к математике имеют задачи и их решения разными способами. Для кого из ребят интересна математика? Да математику любят в основном те ученики, которые умеют решать задачи, научив их решать задачи разными способами, мы окажем существенное влияние на их интерес к предмету, на развитие мышления и речи.

Однако в практике обучения математике различные способы решения ещё не заняли достойного места. Причин этому много, и в частности, недостаточная ориентация на эту работу в учебниках, методических пособиях для учителей. Учитель поэтому зачастую не владеет теми приёмами, с помощью которых можно отыскать другие способы решения. А без этого невозможно и детей научить находить разные способы решения, трудно использовать эти способы решения для других целей обучения и воспитания.

В начальном курсе математики текстовые задачи могут быть решены различными способами : алгебраическим, практическим, графическим, табличным, схематическим, комбинированным.

Рассмотрим различные способы решения текстовых задач на конкретных примерах.

Начальный курс математики ставит своей основной целью научить младших школьников решать задачи арифметическим способом, который сводится к выбору арифметических действий, моделирующих связи между данными и искомыми величинами. Решение задач оформляется в виде последовательности числовых равенств, к которым даются пояснения, или числовым выражением.

Задача. «Утром ушли в море 20 маленьких и 8 больших рыбачьих лодок, 6 лодок вернулись. Сколько лодок с рыбаками должно вернуться?»

I способ. 1. 20+8=28(л.) ушли в море.

2. 28-6=14(л.) должны вернуться.

II способ. 1. Сколько больших лодок должно вернуться? 20-6=14(л.)

2. Сколько всего лодок должно вернуться? 14+8=22(л.)

III способ. 1. Сколько маленьких лодок должно вернуться? 8-6=2(л.)

2.Сколько всего лодок должно вернуться? 20+2=22(л.)

Ответ: должно ещё вернуться 22 лодки. Задача решена различными арифметическими способами.

Если у учащихся нет навыков решения задач различными арифметическими способами или вызывает затруднение их нахождение, можно предложить следующие методические приёмы:

1. разъяснение плана решения задачи;

2. пояснение готовых способов решения;

3. соотнесение пояснения с решением;

4. продолжение начатых вариантов решения;

5. нахождение «ложного» варианта решения из числа предложенных.

Текстовые задачи решаются либо синтетическим методом (вычисления в прямом порядке, от числовых данных условия к числовым результатам, о которых спрашивается в задаче), либо аналитическим (вычисления в обратном порядке с рассуждениями, идущими от вопроса задачи). Примерами этих последних являются задачи о «задуманном числе», а также задачи на части. Естественным оформлением решения таких задач служит составление уравнения – алгебраический метод. Он состоит из следующих шагов: 1.Введение неизвестного. 2.Выражение через это неизвестное величин, о которых говорится в задаче. 3.Составление уравнения. 4.Решение уравнения. 5.Осмысление результата и формулирование ответа.

Задача: «У Иры втрое больше наклеек, чем у Кати, а у Кати на 20 наклеек меньше, чем у Иры. Сколько наклеек у Кати?».

Вначале составим схему уравнения, содержащую не только математические знаки, но и естественные слова.

( Ирины наклейки) – (Катины наклейки) = 20 наклеек.

Получилась вспомогательная модель задачи – частичный перевод текста на математический язык. Введём неизвестное. Пусть х – число Катиных наклеек. Тогда число наклеек у Иры равно х 3.

Составим уравнение х * 3 – х = 20

Ответ: у Кати 10 наклеек.

При обучении алгебраическому методу решения текстовых задач полезно дополнить схему решения самым первым шагом – составлением схемы уравнения, в которую включаются как математические символы, так и нематематические записи и даже рисунки.

Это способ решения задачи с помощью чертежа.

Задача: «Рыбак поймал 10 рыб. Из них 3 леща, 4 окуня, остальные щуки. Сколько щук поймал рыбак?»

лещи окуни щуки

Этот способ, так же как и практический, позволяет ответить на вопрос задачи, не выполняя арифметических действий.

Построение чертежа помогает найти другой арифметический способ решения задачи.

Задача: «На одной машине увезли 28 мешков зерна, на другой на 6 мешков больше, чем на первой, а на третьей на 4 мешка меньше, чем на второй. Сколько мешков зерна увезли на третьей машине?»

I способ. 1. 28+6=34 (мешка) – увезли на второй машине.

2. 34-4=30 (мешка)- увезли на третьей машине.

Ответ : на третьей машине увезли 30 мешков зерна.

Если же мы построим чертеж к этой задачи, то легко найдем другой арифметический способ решения.

  1. На сколько больше мешков увезли на третьей машине, чем на первой? 6-4=2(мешка)
  2. Сколько мешков увезли на третьей машине? 28+2=30 (мешков)

Ответ: на третьей машине увезли 30 мешков зерна.

Из приведенных примеров следует вывод: графическое оформление задачи может определить ход мыслительного процесса и является средством выявления различных способов решения одних и тех же задач. При этом легче усматриваются разные логические основы, содержащиеся в условии задачи; такие способы определяются анализом наглядного сопровождения задачи, на которые учащиеся направляются постановкой учителем соответствующих заданий.

Задача: «В 6 банок поровну разложили 12 кг варенья. Сколько надо таких же банок, чтобы разложить 24 кг варенья?»

В данном случае логическая основа задачи проявляется на двух уровнях – открытом и скрытом, т. е. здесь две логические основы. В первом случае направление мыслительного процесса определяется вопросами:

  1. Сколько кг варенья помещается в одну банку? 12:6=2(кг)
  2. Сколько банок потребуется для 24 кг варенья? 24:2=12(б.)

Во втором случае ход того же процесса определяется другими вопросами:

1.Во сколько раз больше стало варенья? 24:12=2(раза)

Если варенья стало в два раза больше, значит, и банок потребуется в два раза больше.

2.Сколько потребуется банок? 6 * 2=12(б.)

Ответ: потребуется 12 банок.

При решении некоторых задач хорошим подспорьем является табличная форма.

Задача: «У Саши в коллекции 8 жуков и пауков. У всех насекомых 54 ноги. У одного жука 6 ног, а у одного паука – 8ног. Сколько жуков и сколько пауков у Саши в коллекции?»

Источник

Решение задач разными способами-средство повышения интереса к математике.
статья на тему

Данный материал может быть использован на заседании методического объединения учителей начальных классов.

Скачать:

Вложение Размер
vystuplenie.docx 22.07 КБ

Предварительный просмотр:

Выступление на заседании методического объединения начальных классов

Тема: Решение задач разными способами – средство повышения интереса к математике.

Люди научились считать 25-30 тысяч лет тому назад. О значении математики как предмета школьного преподавания М.В.Ломоносов в записке о преподавании физики, химии и математики пишет так:

«А математику уже затем учить следует, что она ум в порядок приводит».

Большие возможности для развития интереса учащихся к математике имеют задачи и их решения разными способами. Для кого из ребят интересна математика? Да математику любят в основном те ученики, которые умеют решать задачи, научив их решать задачи разными способами, мы окажем существенное влияние на их интерес к предмету, на развитие мышления и речи.

Однако в практике обучения математике различные способы решения ещё не заняли достойного места. Причин этому много, и в частности, недостаточная ориентация на эту работу в учебниках, методических пособиях для учителей. Учитель поэтому зачастую не владеет теми приёмами, с помощью которых можно отыскать другие способы решения. А без этого невозможно и детей научить находить разные способы решения, трудно использовать эти способы решения для других целей обучения и воспитания.

Следует отметить, что решение задач различными способами позволяет убедиться в правильности решения задачи даёт возможность глубже раскрыть зависимости между величинами, рассмотренными в задаче.

Возможность решения некоторых задач разными способами основана на различных свойствах действий или вытекающих из них правил.

В качестве основных в математике различают арифметический и алгебраический способы решения задач. При арифметическом способе ответ на вопрос задачи находится в результате выполнения арифметических действий над числами. Арифметические способы решения задач отличаются друг от друга одним или несколькими действиями или количеством действий, также отношениями между данными, данными и искомым, данными и неизвестным, положенными в основу выбора арифметических действий, или последовательностью использования этих отношений при выборе действий.

При алгебраическом способе ответ на вопрос задачи находится в результате составления и решения уравнения.

В зависимости от выбора неизвестного для обозначения буквой, от хода рассуждений можно составить различные уравнения по одной и той же задаче. В этом случае можно говорить о различных алгебраических решениях этой задачи.

Два автомобиля выехали одновременно навстречу друг другу из двух городов, расстояние между которыми 600 км, и через 4 ч встретились. Определи скорость каждого автомобиля, если один ехал быстрее другого на 12 км/ч.

1) 600 : 4 = 150 (км/ч) – скорость сближения.
2) 150 – 12 = 138 (км/ч) – была бы скорость сближения, если бы скорости были равными скорости второго автомобиля.
3) 138 : 2 = 69 (км/ч) – скорость второго автомобиля.
4) 69 + 12 = 81 (км/ч) – скорость первого автомобиля.

1) 600 : 4 = 150 (км/ч) – скорость сближения.
2) 150 – 12 = 138 (км/ч) – была бы скорость сближения, если бы скорости были равными скорости второго автомобиля.
3) 138 : 2 = 69 (км/ч) – скорость второго автомобиля.
4) 150 – 69 = 81 (км/ч) – скорость первого автомобиля.

1) 600 : 4 = 150 (км/ч) – скорость сближения.
2) 150 + 12 = 162 (км/ч) – была бы скорость сближения, если бы скорости были равными скорости первого автомобиля.
3) 162 : 2 = 81 (км/ч) – скорость первого автомобиля.
4) 81 – 12 = 69 (км/ч) – скорость второго автомобиля.

1) 12 x 4 = 48 (км) – на столько больше путь первого автомобиля.
2) 600 – 48 = 552 (км) – проехали бы два автомобиля, если бы скорости были равными скорости второго автомобиля.
3) 552 : 2 = 276 (км) – проехал второй автомобиль.
4) 276 + 48 = 324 (км) – проехал первый автомобиль.
5) 324 : 4 = 81 (км/ч) – скорость первого автомобиля.
6) 276 : 4 = 69 (км/ч) – скорость второго автомобиля.

1) 12 x 4 = 48 (км) – на столько больше путь первого автомобиля.
2) 600 – 48 = 552 (км) – проехали бы два автомобиля, если бы скорости были равными скорости второго автомобиля.
3) 552 : 4 = 138 (км/ч) – была бы скорость сближения, если бы скорости были равными.
4) 138 : 2 = 69 (км/ч) – скорость второго автомобиля.
5) 69 + 12 = 81 (км/ч) – скорость первого автомобиля.

1) 12 x 4 = 48 (км) – на столько больше путь первого автомобиля.
2) 600 + 48 = 648 (км) – проехали бы два автомобиля, если бы скорости были равными скорости первого автомобиля.
3) 648 : 4 = 162 (км/ч) – была бы скорость сближения, если бы скорости были равными скорости первого автомобиля.
4) 162 : 2 = 81 (км/ч) – скорость первого автомобиля.
5) 81 – 12 = 69 (км/ч) – скорость второго автомобиля.

1) 12 x 4 = 48 (км) – на столько больше путь первого автомобиля.
2) 600 – 48 = 552 (км) – проехали бы два автомобиля, если бы скорости были равными скорости второго автомобиля.
3) 552 : 2 = 276 (км) – проехал второй автомобиль.
4) 276 : 4 = 69 (км/ч) – скорость второго автомобиля.
5) 69 + 12 = 81 (км/ч) – скорость первого автомобиля.

1) 12 x 4 = 48 (км) – на столько больше путь первого автомобиля.
2) 600 + 48 = 648 (км) – проехали бы два автомобиля, если бы скорости были равными скорости первого автомобиля.
3) 648 : 2 = 324 (км) – проехал первый автомобиль.
4) 324 : 4 = 81 (км/ч) – скорость первого автомобиля.
5) 81 – 12 = 69 (км/ч) – скорость второго автомобиля.

1) 600 : 4 = 150 (км/ч) – скорость сближения.
2) 150 : 2 = 75 (км/ч) – средняя скорость автомобилей (была бы скорость каждого автомобиля, если бы скорости были равными).
3) 12 : 2 = 6 (км/ч) – на столько больше скорость первого автомобиля, чем средняя скорость; на столько меньше скорость второго автомобиля, чем средняя скорость.
4) 75 + 6 = 81 (км/ч) – скорость первого автомобиля.
5) 75 – 6 = 69 (км/ч) – скорость второго автомобиля.

  1. 4 + 4 = 8 (км/ч) – были в пути два автомобиля.
    2) 600 : 8 = 75 (км/ч) – средняя скорость автомобилей (была бы скорость каждого автомобиля, если бы скорости были равными).
    3) 12 : 2 = 6 (км/ч) – на столько больше скорость первого автомобиля, чем средняя скорость; на столько меньше скорость второго автомобиля, чем средняя скорость.
    4) 75 + 6 = 81 (км/ч) – скорость первого автомобиля.
    5) 75 – 6 = 69 (км/ч) – скорость второго автомобиля.

Конечно, весь комплект представленных решений предложил не один ученик, но каждый из них нашел не меньше трех без использования какого-либо вида помощи с моей стороны.

При выборе рационального способа решения ученики сначала выбрали арифметический способ, мотивируя это тем, что рассуждения проще и решение по действиям выполнить легче, чем решить уравнения. Из всех предложенных арифметических решений в качестве рационального выбран первый. При этом на выбор влияли количество действий (четыре) и их трудность (наиболее легким ученики посчитали сложение в последнем действии).

Пусть х (км/ч) – скорость второго автомобиля.
Тогда скорость первого автомобиля равна ( х + 12) (км/ч).
Скорость сближения автомобилей – ( х + х + 12) (км/ч).
Общий путь автомобилей до встречи – ( х + х + 12) x 4 (км).
По условию задачи этот путь равен 600 км.
Получаем уравнение: ( х + х + 12) x 4 = 600.

Пусть скорость второго автомобиля у (км/ч).
Тогда скорость первого автомобиля ( у + 12) (км/ч).
Путь второго автомобиля до встречи равен у x 4 (км), а первого – ( у + 12) x 4 (км).
Путь, пройденный двумя автомобилями вместе, – у x 4 + ( у + 12) x 4 (км).
По условию задачи он равен 600 км.
Получаем уравнение: у x 4 + ( у + 12) x 4 = 600.

Ответ : 81 км/ч – скорость первого автомобиля, 69 км/ч – скорость второго автомобиля.

Но надо отметить, что в начальных классах алгебраический способ не применяется для решения задач.

В заключение необходимо сказать о том, что решение задач различными способами – дело непростое, требующее глубоких математических знаний и умения отыскивать наиболее рациональные решения, что определенно влияет на общий уровень развития младшего школьника.

По теме: методические разработки, презентации и конспекты

Конспект урока математики по теме: «Решение задач разными способами»

Конспект урока с использованием деятельностного подхода.

Конспект урока по математике в 3 классе «Решение задач разными способами»

Конспект урока по математике в 3 классе.

Материал для уроков математики. Решение задач разных видов.

Данный материал позволит организовать работу по теме: «Повторение» в 4 классе.

Конспект урока по математике. 1кл.УМК «Начальна яшкола 21века». Тема»Решение задач Разными способами»

Ознакомление с частями задачи, с решением задач разными способами с использованием счётного материала. Усовершенствование умения решать выражения на увеличение 9уменьшение) чисел в пределах 10.

Решение задач разными способами – средство повышения интереса к математике.

Среди всех мотивов учебной деятельности самым действенным является познавательный интерес, возникающий в процессе обучения. Он не только активизирует умственную деятельность в данный момент, но и напр.

Решение задач разными способами-средство повышения интереса к математике.

Для широкого и активного включения детей в решение задач разными способами надо использовать задачи, допускающие разные способы решения.

Отчет по теме самообразования: «Решение задач разными способами, как средство повышения интереса и качества обучения»

Отчет по теме самообразования: «Решение задач разными способами, как средство повышения интереса и качества обучения&raquo.

Источник

Читайте также:  Передний способ формирования петли
Оцените статью
Разные способы