Восстановление металлов химическим способом
Химическая металлизация в растворах
Способы получения металлических покрытий путем химического восстановления в растворах основаны на реакции взаимодействия простых или комплексных ионов металла с растворенным восстановителем, в результате которой на каталитически активную поверхность оседает металлический слой. Для осаждения необходимо, чтобы растворенный восстановитель был достаточно сильным и активным, а образовавшийся металл действовал на реакцию восстановления как катализатор. Это обеспечивает получение компактного покрытия значительной (десятки микрометров) толщины.
Степень автокатализа зависит от природы металла и восстановителя. Выбор возможных восстановителей тем шире, чем положительнее стандартный электрохимический потенциал пары металл — ион металла. Движущей силой автокаталитического процесса восстановления ионов металла является каталитическое окисление восстановителя, которое с достаточной интенсивностью протекает лишь на некоторых металлах, обладающих каталитическими свойствами. В отсутствие автокатализа реакция восстановления если и протекает, то во всем объеме раствора и приводит к образованию металлического порошка.
Металл | Восстановитель | |||||
---|---|---|---|---|---|---|
CHO2 | H2PO2 — | N2H4 | BH4 — | BH3 | Прочие | |
Железо | Fe-B | |||||
Никель | Ni-P | Ni-B | Ni-B | |||
Кобальт | Co | Co-P | Co | Co-B | Co-B | |
Олово | Sn | |||||
Медь | Cu | Cu | Cu | Cu | Cu | |
Серебро | Ag | Ag | Ag | Ag | Ag | Ag |
Золото | Au | Au | Au | Au | Au | |
Палладий | Pd | Pd-P | Pd | Pd-B | ||
Родий | Rh | Rh | ||||
Рутений | Ru | |||||
Платина | Pt | Pt | Pt |
Вследствие перечисленных требований практически приемлемо для химической металлизации весьма ограниченное число систем, состоящих из ионов металла и восстановителя (табл. 4).
Как видно, почти все вссстановители — водородсодержащие соединения. Применение гипофосфита натрия или борогидрида натрия позволяет получать фосфор- и борсодержащие покрытия, придающие им большую по сравнению с чистым металлом твердость.
Восстанавливающая способность водородсодержащих соединений, как правило, увеличивается с повышением pH раствора. По этой причине многие растворы металлизации являются щелочными, а применение борогидрида вообще возможно лишь при pH больше 9, так как в менее щелочной среде он быстро разлагается.
В применяемых на практике условиях восстанавливающая способность вышеуказанных веществ редко реализуется полностью. Вследствие этого термодинамически наиболее сильный восстановитель — гипофосфит можно использовать лишь для получения покрытий некоторых металлов, обладающих большей каталитической способностью. А менее сильные, но кинетически более активные восстановители — борогидрид и гидразин — можно использовать почти для всех осаждаемых из водных растворов металлов.
Такие простые восстановители, как ионы металлов переменной валентности нижних степеней окисления (Fe 2+ , Sn 2+ , Ti 3+ , Cr 2+ , Co 2+ ), все еще не находят широкого применения для получения металлических покрытий химическим восстановлением. Это связано с тем, что процессы с их участием обычно не обладают достаточными автокаталитическими свойствами. Не применяется и такой удобный и широко распространенный в гидрометаллургии восстановитель, как водород. А он мог бы быть весьма полезным. Его применение позволяло бы получать «чистые» покрытия, а не сплавы, и продукт его окисления — вода не «загрязняла» бы применяемых для получения металлических покрытий водных растворов.
Простые восстановители типа Fe (II) и Co(П) применяют для восстановления и осаждения серебра как в так называемых физических проявителях для фотоматериалов, так и для получения толстых серебряных покрытий на пластмассах. Для химического серебрения особенно удобны аммиачные растворы солей серебра и Co (II). Они весьма стабильны, и на активированной поверхности процесс металлизации протекает с большой скоростью (2-3 мкм/ч). Их легко регенерировать, растворяя в них металлическое серебро (при этом Co (III) восстанавливается до Co (II).
В последнее время разработаны способы меднения с Ti (III) или Sn (II) в качестве восстановителя. При использовании олова осаждается его сплав с медью, а кроме того, по реакции диспропорционирования Sn (II) в щелочной среде можно получить слои металлического олова.
Используя восстановительные свойства Cu (I) в сорбционно-контактном способе металлизации, можно осадить сплавы Cu-Pd. Этот способ является как бы гибридом иммерсионного (когда металлическое покрытие образуется за счет растворения металлической подложки из менее благородного и более активного металла) и химического методов: Cu (I) образуется при растворении медной фольги на фольгированном диэлектрике, а покрытия (сплавы Cu-Pd) осаждаются вблизи ее. Кроме того, используя ионы Cu (I) и реакцию их диспропорционирования, можно получать медные покрытия.
В настоящее время разработаны методы получения покрытий из 11 металлов (см. табл. 4). В основном это элементы групп железа и меди, а также некоторые другие металлы. В литературе, особенно патентной, имеются описания получения покрытий химическим путем также из таких металлов, как хром, кадмий, свинец. Однако реализовать их удается не всегда.
Наряду с покрытиями из относительно чистых металлов химическим путем можно получить и покрытия из сплавов. При восстановлении гипсфосфитом или борогидридом в покрытия часто включается фосфор или бор из самого восстановителя. Осаждение таких сплавов, содержащих несколько металлов и металлоидов, представляет значительный интерес, так как это дает возможность изменять в широких пределах свойства покрытий: увеличивать твердость, магнитные свойства, коррозионную стойкость, уменьшать электропроводность и т. п.
Процесс получения покрытий из сплавов химическим способом имеет ряд особенностей, так как основной металл должен осаждаться вследствие автокаталитической реакции. Во-первых, осаждаемый металл не должен быть ингибитором и не должен уменьшать каталитические свойства основного металла. Во-вторых, его стандартный электрохимический потенциал должен быть близок к стандартному электрохимическому потенциалу основного металла, во всяком случае он не должен быть значительно меньше его.
Содержание в сплаве металлов, восстанавливаемых по автокаталитической реакции, может меняться во всем интервале от 0 до 100 %. Примером таких систем являются сплавы никеля с кобальтом.
Довольно большие количества металла могут включаться в покрытие и в тех случаях, когда сам металл, не будучи катализатором реакции восстановления, не является и каталитическим ядом и обладает достаточно положительным стандартным электрохимическим потенциалом, то есть может легко восстанавливаться. В таких случаях он может быть осажден на поверхность основного металла вследствие неизбежных в электролите электрохимических реакций, происходящих при довольно отрицательном значении потенциала металлической поверхности в растворе химической металлизации во время реакции восстановления. Примерами таких содержащих каталитически неактивные металлы (кадмий, свиней, рений) сплавов могут быть сплавы Cu-Cd, Cu-Pb, Ni-Re-P, Ni-Re-B.
В тех случаях, когда металл восстанавливать трудно, его содержание в сплаве не должно быть большим. Трудно получить сплавы марганца или хрома, электрохимический потенциал которых находится на нижней границе потенциалов металлов, получаемых из водных растворов.
Путем химического восстановления в растворах можно осадить и композиционные или, как их еще называют дисперсионные покрытия, которые представляют собой слой металла, содержащего включения твердых частиц других материалов — каолина, талька, графита, корунда, карбидов, боридов, оксидов металлов. Иногда в качестве твердых частиц выступают и порошки таких металлов, как Cr, Mo, W, Ti). Такие композиционные покрытия обладают ценными свойствами — высокой твердостью и износостойкостью. Химически осаждаемые композиционные покрытия отличаются от получаемых электрохимически тем, что содержат больше включенных частиц.
Вопрос стабильности растворов металлизации очень важен, так как только его решение позволяет составлять пригодные для металлизации растворы, которые бы не разлагались с выделением порошкообразного металла (шлама) во всем объеме. Некаталитическая вначале реакция восстановления ионов металла после образования первых металлических частиц сразу же может стать автокаталитической и ускоряться по мере дальнейшего образования и роста частиц. Это приведет к непроизводительному расходу как восстановителя, так и ионов металла, а образующиеся мелкие частицы металла ухудшат качество покрытия. Разница скоростей некаталитического (объемного) и каталитического (поверхностного) процессов восстановления определяет практическое применение растворов химической металлизации.
Экспериментальное изучение такой некаталитической реакции, которая сразу же переходит в каталитическую и вследствие этого становится малозаметной, — дело весьма сложное. Можно предположить, что активационный барьер некаталитической реакции должен быть довольно высоким, так как реакция должна преодолевать не только энергетический барьер процесса окисления — восстановления, но и барьер образования новой металлической, а часто и сопутствующей ей газовой фазы. Кроме того, маленькие металлические частицы в электролите, содержащем ионы того же металла, имеют более отрицательный равновесный потенциал, чем большой электрод, и этот потенциал быстро уменьшается с уменьшением размера частицы. Этим, по-видимому, можно объяснить тот факт, что в некоторых благополучных случаях некаталитическая реакция вообще практически не протекает.
Источник
Большая Энциклопедия Нефти и Газа
Химическое восстановление — металл
Химическое восстановление металлов из водных растворов их солей является одним из распространенных способов нанесения проводящего слоя. Наиболее широко применяются пленки серебра и меди. В качестве восстановителя используют растворы формалина, глюкозы, сегнетовой соли и др. Химическое серебрение ведут при температуре 10 — 20 С. При этом скорость восстановления металла замедляется, но покрытие получается более плотным и мелкокристаллическим. [1]
Химическое восстановление металлов является автокаталитическим процессом осаждения компактных металлических покрытий на поверхности изделия путем взаимодействия находящихся в растворе ионов металла и восстановителя, являющегося донором электронов. [2]
Химическим восстановлением металлов из растворов их соединений получают порошки Си, Ni, Co, Ag и их смеси. Восстановителем служит водород или диоксид углерода. Исходное сырье — сульфатные водные или аммиачные растворы соответствующих металлов. [3]
Реакции химического восстановления металлов являются реакциями автокаталитическими, так как металл образовавшийся в результате химического осаждения, катализирует дальнейшую реакцию восстановления этого же металла. Для начального же периода восстановления металла необходимо на поверхности диэлектрика получить каталитически активные участки, на которых начинается процесс химического восстановления металла. [4]
Распространению процесса химического восстановления металлов способствуют три его особенности. [5]
Окислительно-восстановительный процесс химического восстановления металлов протекает между катализатором и водным раствором, содержащим восстановитель, соли восстанавливаемых металлов, комплексообра-зователь и буферную систему. [6]
Для проведения процесса химического восстановления металлов весьма существенным является подбор материала ванны. Материал должен отвечать следующим требованиям: быть химически стойким к растворам с кислотностью в пределах рН 3 — 11 и выдерживать температуру до 100 С без изменения физико-химических и механических свойств. [7]
Для более полной характеристики процессов химического восстановления металлов необходимо применять электрохимические методы исследования. Потенциал фт в общем случае не имеет простой связи со скоростью осаждения металла, но может служить показателем протекания процесса восстановления, а его изменения могут дать информацию об изменениях в растворе и состоянии поверхности катализатора. [8]
Для более полной характеристики процессов химического восстановления металлов необходимо применять электрохимические методы исследования. Потенциал Ем в общем случае не имеет простой связи со скоростью осаждения металла, но может служить показателем протекания процесса восстановления, а его изменения могут дать информацию об изменениях в растворе и состоянии поверхности катализатора. [9]
Катодное травление происходит за счет химического восстановления металла из окисла и механического отрывания окислов бурно выделяющимся водородом. [10]
Катодное травление происходит в результате химического восстановления металла из окисла и механического отрывания окислоп бурно выделяющимся водородом. Продолжительность травления от 3 до 15 мин. [11]
В настоящее время разработаны способы химического восстановления металлов из их соединений для получения пленок серебра, меди, золота, платины, никеля, кобальта и сурьмы. [12]
Еще одним методом получения покрытий является химическое восстановление металлов из растворов их солей. При этом образуется покрытие, прочно сцепленное с основным металлом. Процесс получения никелевых покрытий такого рода называется химическим никелированием. [13]
Проведенные ранее исследования в области механизма процесса химического восстановления металлов с использованием гипофосфита натрия 6 выявили роль металла как передатчика электронов; использование электрохимических методов описания процессов на электроде позволило более детально охарактеризовать природу каталитических этапов реакций, лимитирующих скорость суммарного процесса. Несмотря на то, что к настоящему времени мы еще далеки от полного понимания всей совокупности явлений, происходящих в ходе формирования покрытий, обобщение проделанных в этом направлении работ должно содействовать выбору более целесообразных путей дальнейшего изучения процесса. [14]
Рассмотрены основные вопросы химической металлизации: подготовка поверхности, химическое восстановление металлов в растворах и технологические процессы меднения, никелирования, кобальтирования, нанесения покрытий на основе сплавов и благородных металлов. Приведены физико-химические основы процессов, даны конкретные указания по выполнению отдельных операций. [15]
Источник