Внутренняя энергия способы изменения внутренней энергии тела видеоурок

Внутренняя энергия тела и способы её изменения

Урок 2. Физика 8 класс (ФГОС)

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Внутренняя энергия тела и способы её изменения»

Вы знаете, что существует два вида механической энергии — кинетическая и потенциальная. Давайте вспомним, что кинетической энергией обладает всякое движущееся тело: .

Потенциальная энергия определяется взаимным положением взаимодействующих тел или отдельных частей тела: Eп = mgh.

Изучая механические явления, вы узнали, что кинетическая и потенциальная энергии могут превращаться друг в друга таким образом, что их сумма остаётся постоянной величиной: E = Ek + Eп = const.

В этом заключается один из наиболее общих и фундаментальных законов природы — закон сохранения и превращения энергии.

Однако, вы знаете, что в реальных опытах закономерности превращения энергии выглядят гораздо сложнее.

Например, возьмём гирю из какого-либо мягкого металла, например, из свинца, и стальную плиту. Поднимем гирю вверх на какую-либо высоту, тем самым сообщив ей некоторый запас потенциальной энергии. А затем отпустим. Во время полёта гири её потенциальная энергия уменьшается, а кинетическая, наоборот, увеличивается. После падения, гиря остановится. Её потенциальная энергия относительно плиты равна нулю, как равна нулю и кинетическая энергия, поскольку гиря неподвижна. Означает ли это, что нарушился основной закон природы, и энергия бесследно исчезла?

Конечно же нет. Механическая энергия перешла в другой вид энергии. Если внимательно посмотреть на гирю после удара, то мы обнаружим, что она, как и плита, слегка сплющилась, то есть деформировалась. А если мы измерим её температуру до и после падения, то окажется, что она увеличилась.

Мы уже знаем, что при изменении температуры тела, изменяется скорость движения его молекул. Помимо этого, в результате деформации гири, изменилось и взаимное расположение молекул друг относительно друга. Значит изменилась и их потенциальная энергия.

Следовательно, механическая энергия, которой обладала гиря в начале опыта, не исчезла: она перешла в потенциальную и кинетическую энергию её молекул.

Сумма кинетической энергии теплового движения частиц, из которых состоит тело, и потенциальной энергии их взаимодействия, называется внутренней энергией тела.

Обозначают внутреннюю энергию буквой U. А измеряют её в тех же единицах, что и механическую энергию: [U] = [Дж].

Возникает логичный вопрос: а каково значение внутренней энергии какого-либо тела?

Для примера рассмотрим какой-нибудь газ, например, кислород. Потенциальная энергия взаимодействия его молекул между собой практически отсутствует. А кинетическая энергия одной молекулы кислорода очень мала. Расчёты показывают, что среднее значение кинетической энергии молекулы кислорода при комнатной температуре равно 3,7 ∙ 10 −21 Дж.

Кто-то скажет, что это очень маленькая величина, и будет прав. Но, например, в 1 м 3 газообразного кислорода содержится примерно 2,7 ∙ 10 25 . А их общая энергия равна почти 100 кДж. А это значение энергии уже весьма значительно. Такой энергией, например, будет обладать одна тонный бизон, если его поднять на высоту десяти метров.

Теперь выясним, от чего зависит внутренняя энергия тела?

Вы уже знаете, что чем больше температура тела, тем быстрее движутся молекулы. Чем больше скорость движения, тем больше их кинетическая энергия. Значит, внутренняя энергия тела зависит от его температуры.

Также вам должно быть известно, что для перевода вещества из жидкого состояния в газообразное, например, чтобы превратить воду в пар, нужно подвести энергию. Следовательно, пар будет обладать большей внутренней энергией, чем вода той же массы. Значит, внутренняя энергия тела при неизменной массе зависит от его агрегатного состояния.

Читайте также:  Способы решения систем линейных уравнений матричным методом

Т. к. масса тела равна сумме масс составляющих его частиц, то внутренняя энергия зависит и от массы тела.

Но внутренняя энергия тела не зависит от его механического движения и от его взаимодействия с другими телами. Так, например, внутренняя энергия мяча, лежащего на полу и поднятого на некоторую высоту от пола, одинакова, так же, как и мяча, неподвижного и катящегося по полу (если, конечно, пренебречь силами сопротивления его движению).

Возникает вопрос, а может ли у тела отсутствовать внутренняя энергия?

Чтобы правильно на него ответить, достаточно вспомнить, что движение частиц, из которых состоит тело, никогда не прекращается, даже при очень низких температурах. Поэтому тело всегда обладает внутренней энергией.

Как правило, значение внутренней энергии в большинстве случаев вычислить очень трудно, поскольку каждое тело состоит из огромного числа частиц. Однако нас чаще будет интересовать не само значение внутренней энергии, а её изменение. А о нём можно судить, в частности, по значению совершённой работы.

Вот мы и подошли ко второй важной проблеме — можно ли как-то изменить внутреннюю энергию тела?

Рассуждаем последовательно. Внутренняя энергия определяется энергией движения и энергией взаимодействия частиц. Следовательно, если мы сможем изменить скорость движения частиц, либо усилить или ослабить их взаимодействие друг с другом, то мы сможем изменить и внутреннюю энергию тела.

Рассмотрим каждую из возможностей изменения внутренней энергии отдельно.

Мы уже знаем, что изменить кинетическую энергию частиц тела можно путём увеличения или уменьшения температуры тела.

Существует два способа это сделать. Рассмотрим их на конкретных примерах. И так, возьмём закрытый сосуд с воздухом, к которому присоединим манометр. И начнём натирать сосуд с помощью тряпочки или сукна.

Уровень жидкости в левом колене манометра начинает понижаться. Это обусловлено тем, что воздух в колбе начинает нагреваться, вследствие чего, увеличивается его давление. Значит увеличивается и кинетическая энергия молекул воздуха. Таким образом, совершив механическую работу (трение сукна о колбу) мы смогли увеличить кинетическую энергию молекул находящегося в колбе воздуха.

Проделаем ещё один опыт. Возьмём толстостенный стеклянный сосуд, на дне которого находится небольшое количество воды. Закроем его пробкой с пропущенной через неё трубкой. Соединим трубку с насосом и начнём накачивать в сосуд воздух. Через некоторое время пробка из сосуда вылетит и в нём образуется туман.

Туман — это превратившийся в воду водяной пар.

Подумайте, когда образуется туман? Наверняка каждый из вас замечал, что чаще всего туман образуется тогда, когда после тёплого дня, наступает прохладная ночь, т. е. при значительном понижении температуры.

Следовательно, температура воздуха в сосуде понизилась. А понизилась она из-за того, что воздух, находящийся в сосуде, совершил работу. Вследствие чего, внутренняя энергия молекул воздуха в сосуде уменьшилась.

Таким образом, мы с вами можем сделать важный вывод о том, что внутренняя энергия тела изменяется при совершении работы. При этом если тело совершает работу, то его внутренняя энергия уменьшается. А если над телом совершают работу, то его внутренняя энергия увеличивается.

Теперь подумаем, можно ли изменить внутреннюю энергию тела, без совершения механической работы?

Вернёмся к опыту с колбой и манометром. Теперь не будем натирать колбу, а нагреем в ней воздух при помощи спиртовки. И опять через небольшой промежуток времени уровень жидкости в левом колене манометра начнёт понижаться. Что свидетельствует о том, что опять происходит изменение внутренней энергии воздуха в колбе.

Теперь обратимся к ситуации, с которой вы сталкиваетесь в жизни постоянно. Возьмём стакан с горячим чаем и металлическую ложку. Вы хорошо знаете, что если ложку опустить в стакан с чаем, то она через некоторое время тоже становится горячей.

В этом случае, как и в предыдущем, работа не совершается, но внутренняя энергия ложки увеличивается, о чём и свидетельствует повышение её температуры.

Поскольку вначале температура воды выше, чем температура ложки, то и средняя скорость молекул воды больше. А это значит, что молекулы воды обладают большей кинетической энергией, чем частицы металла, из которого сделана ложка. При столкновении с частицами металла молекулы воды передают им часть своей энергии, и кинетическая энергия частиц металла увеличивается. А кинетическая энергия молекул воды при этом уменьшается.

Читайте также:  Социальные сети как способ продвижения рекламы

В рассмотренных нами примерах внутренняя энергия тел изменялась путём теплопередачи.

Теплопередача — способ изменения внутренней энергии тела, при котором энергия передаётся от одной части тела к другой или от одного тела к другому без совершения работы.

Стоит обратить внимание на то, что процесс теплопередачи происходит в определённом направлении — от более нагретых тел к менее нагретым, но не наоборот. А когда температуры тел выравниваются, теплопередача прекращается.

Таким образом, возможны два способа изменения внутренней энергии —совершение механической работы и теплопередача.

Существует три вида теплопередачи — теплопроводность, конвекция и излучение. Но о них мы с вами поговорим на следующих занятиях.

Источник

Внутренняя энергия

Урок 34. Физика 10 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Внутренняя энергия»

Прежде чем приступить к изучению нового материала, давайте с вами вспомним, чем мы занимались при изучении молекулярно-кинетической теории. Там наша основная задача заключалась в установлении связи между макроскопическими параметрами, характеризующими состояние системы, и её микроскопическими параметрами. Это позволило нам объяснить, почему газ оказывает давление на стенки сосуда, что такое температура и так далее.

Также мы с вами вывели уравнение состояния идеального газа. Удалось нам это сделать только потому, что мы рассматривали самую простую систему — идеальный газ. Напомним, что в идеальном газе отсутствуют взаимодействия между молекулами, и поэтому нам не нужно было учитывать потенциальную энергию их взаимодействия. Однако, если бы мы попытались построить молекулярно-кинетическую теорию реального газа (не говоря уже о жидкостях и твёрдых телах), то всё было бы гораздо сложнее, а порой и почти невозможно.

Но существует ещё один раздел молекулярной физики, который пытается установить соответствия между макроскопическими параметрами, абсолютно не интересуясь, как устроена система (то есть без учёта молекулярного строения тел). Этот раздел физики называется термодинамикой.

Интересно, что первой научной теорией тепловых процессов была не молекулярная физика, а именно термодинамика. Считается, что она берёт своё начало с работы Сади Карно «О движущей силе огня и о машинах, способных развивать эту силу», опубликованной в 1824 году.

А становление термодинамики как науки началось примерно в 40-х годах XIX века после того, как Юлиус Майер, Герман Гельмгольц и Джеймс Джоуль количественно определили связь между механической работой и теплотой и сформулировали универсальный закон сохранения и превращения энергии.

Выводы термодинамики основаны на фундаментальных законах, называемых началами термодинамики. Это не теоретические законы. Все они были установлены в результате обобщения многочисленных экспериментальных фактов.

Все физические тела и их модели в термодинамике мы будем называть термодинамическими системами. При этом для каждой изолированной термодинамической системы существует состояние термодинамического равновесия, в которое она переходит самопроизвольно. Это утверждение называют нулевым началом термодинамики.

Основным понятием в термодинамике является понятие внутренней энергии, о которой мы говорили ещё в восьмом классе. Давайте с вами вспомним, что под внутренней энергией тела (или системы тел) понимают сумму кинетической энергии хаотического теплового движения молекул и потенциальной энергии их взаимодействия.

Обозначают внутреннюю энергию большой латинской буквой U. А измеряют её в тех же единицах, что и механическую энергию, то есть в джоулях.

Теперь давайте с вами вспомним, от каких величин зависит внутренняя энергия тела или системы тел. Мы уже с вами знаем, что чем выше температура тела, тем быстрее движутся его молекулы и тем больше их кинетическая энергия. Значит, внутренняя энергия тела зависит от его температуры.

Читайте также:  Что такое динамический способ

Также нам известно, что для перевода вещества, например, из жидкого состояния в газообразное, нужно к веществу подвести энергию. Следовательно, пар будет обладать большей внутренней энергией, чем жидкость той же массы. Значит, внутренняя энергия тела при неизменной массе зависит от его агрегатного состояния.

Ну а так как масса тела равна сумме масс составляющих его частиц, то внутренняя энергия зависит и от массы тела.

Но внутренняя энергия тела не зависит от его механического движения и от его взаимодействия с другими телами. Так, например, внутренняя энергия мяча, лежащего на полу и поднятого на некоторую высоту от пола, одинакова, так же как и мяча, неподвижного и катящегося по полу (если, конечно, пренебречь силами сопротивления его движению).

Рассчитать внутреннюю энергию можно только для идеального газа. Давайте с вами определим внутреннюю энергию идеального одноатомного газа, то есть газа, состоящего из отдельных атомов (к такому газу относятся инертные газы — гелий, неон, аргон и так далее).

Итак, согласно модели идеального газа, его молекулы не взаимодействуют друг с другом. Поэтому внутренней энергией такого газа является сумма кинетических энергий хаотического движения всех его молекул или атомов. Следовательно, внутренняя энергия идеального одноатомного газа равна произведению средней кинетической энергии теплового движения молекул на их число:

Число молекул в данной порции газа мы можем легко выразить из определения количества вещества:

А значение средней кинетической энергии поступательного движения молекул мы распишем через постоянную Больцмана и абсолютную температуру:

Перепишем формулу для внутренней энергии с учётом последних двух формул:

Теперь давайте с вами вспомним, что произведение постоянной Больцмана и числа Авогадро — это есть универсальная газовая постоянная R. Тогда получаем, что внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной температуре и не зависит от других макроскопических параметров системы:

Для примера давайте с вами определим внутреннюю энергию неона массой 5 г, находящегося при температуре 27 о С.

Как правило, значение внутренней энергии в большинстве случаев вычислить очень трудно, поскольку каждое тело состоит из огромного числа частиц. Однако нас чаще будет интересовать не само значение внутренней энергии, а её изменение, которое происходит при переходе системы из одного состояния в другое.

Под приращением (или изменением) внутренней энергии понимают разность внутренних энергий системы в конечном и начальном состояниях:

Например, переход некоторой массы идеального газа из состояния один в состояние три можно осуществить или в ходе изохорного нагревания и последующим изобарным расширением, или при изобарном расширении, а затем при изохорном нагревании. Однако изменение внутренней энергии газа и в одном и в другом случае будет одинаковым:

Иными словами, внутренняя энергия является функцией состояния системы. Это означает, что изменение внутренней энергии при переходе термодинамической системы из одного состояния в другое зависит только лишь от значений параметров этих состояний, а не от процесса перехода.

В частности, изменение внутренней энергии данной масса идеального одноатомного газа происходит только при изменении его температуры:

В качестве примера решим такую задачу. На рисунке в координатах (p, V) изображён процесс перехода идеального одноатомного газа определённой массы из состояния 1 в состояние 2. Определите приращение внутренней энергии газа, если его давление в конечном состоянии составляет 2 МПа, а объём в начальном состоянии был равен 3,0 л.

В заключении урока отметим, что при определении внутренней энергии реальных газов, жидкостей и твёрдых тел необходимо ещё учитывать и потенциальную энергию взаимодействия частиц, которая зависит от расстояния между ними. Поэтому в общем случае внутренняя энергия макроскопических тел зависит не только от абсолютной температуры, но и от объёма.

При изучении физики в восьмом классе вы узнали, что изменить состояние термодинамической системы можно двумя способами: используя теплопередачу или совершая работу. Процесс теплопередачи и совершение работы характеризуют соответственно физическими величинами — количеством теплоты Q и работой А, которые являются мерами изменения внутренней энергии системы.

Источник

Оцените статью
Разные способы