Олимпиада по математике школьный этап 2021 ВОШ задания и ответы для 4-11 класса
ПОДЕЛИТЬСЯ
Задания и ответы школьного этапа 2021 олимпиады по математике для 4-11 класса всероссийской олимпиады школьников 2021-2022 учебного года, официальная дата проведения олимпиады в Омске: 06.10.2021 (6 октября 2021 года)
Задания и ответы для 4 класса: скачать
Задания и ответы для 5 класса: скачать
Задания и ответы для 6 класса: скачать
Задания и ответы для 7 класса: скачать
Задания и ответы для 8 класса: скачать
Задания и ответы для 9 класса: скачать
Задания и ответы для 10 класса: скачать
Задания и ответы для 11 класса: скачать
Интересные задания и ответы олимпиады:
1)Ваня представил число 100 в виде суммы 14 слагаемых, имеющих одинаковую сумму цифр: 100=20+20+20+20+2+2+2+2+2+2+2+2+2+2 (сумма цифр числа 20 равна 2+0=2). Вася смог представить число 100 в виде суммы 11 слагаемых, имеющих одинаковую сумму цифр. Как он это сделал? Достаточно привести один пример такого представления.
Ответ: 100=50+5+5+5+5+5+5+5+5+5+5.
2)Вера, накопив 200 рублей, хотела купить пенал, но этих денег ей не хватило. Через несколько дней пенал уценили, и он стал стоить в два раза меньше. Теперь Вера смогла его купить и даже получила сдачу 15 рублей. Сколько стоил пенал первоначально? Ответ нужно подтвердить вычислениями и объяснениями.
Ответ: 370 р.
3)Фермер огородил снаружи участок земли и разделил его на квадратики со стороной 3 м. В пяти квадратиках он разместил гусятники (обозначены «Г»), а в других пяти – будки со сторожевыми собаками (обозначены «С»). Но гуси нападают на собак, а собаки могут загрызть гусей. Помогите фермеру построить по линиям сетки дополнительные заборы общей длины 30 м, чтобы защитить собак от гусей и гусей от собак.
Ответ: например, так, как на рисунке справа.
4)По кругу стоят 10 сорочат. Мама–сорока кормит их кашей: первому – 1 ложку, второму – 2 ложки, следующему – 1, потом – 2 и так далее. Всего она раздала 55 ложек каши, и на этом каша закончилась. Сколько сорочат получили ровно 4 ложки каши? Ответ нужно обосновать.
Ответ: 4 птенца
5)Никита записал два нечётных числа, а потом заменил в них разные цифры разными буквами, а одинаковые – одинаковыми. У Никиты получились два слова: УЧИТЕЛЯ и МЕЧТАТЕЛИ. Известно, что произведение цифр числа УЧИТЕЛЯ не равно нулю, а произведение цифр числа МЕЧТАТЕЛИ равно нулю. Чётной или нечётной будет сумма Я+И+МЕЧТА? Ответ нужно обосновать.
Ответ: чётная
6)В семье Веснушкиных три человека, и у каждого на лице в два раза больше веснушек, чем ему лет. Васе сейчас 11 лет. Васина мама младше Васиного папы на 3 года, и у неё на лице 66 веснушек. Сколько веснушек на лице у всех троих вместе? Ответ нужно подтвердить вычислениями и объяснениями.
Ответ: 160 веснушек.
7)Найдите какое-нибудь решение неравенства М Ответ: например, М=1, А=3, Т=2, Е=4, И=5, К=9, т.е. 1
8)Маша попросила встать 30 одноклассников по кругу и стала раздавать им шоколадные конфеты. Первому дала 1 конфету, второму – 2 конфеты, следующему – снова 1 конфету, потом – 2 конфеты и так далее. Всего она раздала 55 конфет, и на этом конфеты закончилась. Сколько Машиных одноклассников получили ровно 2 конфеты? Ответ нужно обосновать
Ответ: 16 человек
9)На рисунке слева изображена фигура на клетчатой бумаге. Сторона каждой клетки равна 1 см. Разрежьте данную фигуру по линиям сетки на фигурки, удовлетворяющие всем четырём условиям: 1) площадь каждой равна 5 см2 ; 2) периметр каждой равен 12 см; 3) все фигурки должны быть различными, т.е. не совпадать при наложении; 4) в каждой должен быть ровно один серый квадратик. Достаточно привести один вариант разрезания.
Ответ: например, как на рисунке ниже.
10)Винни-Пух, Пончик и Карлсон приняли участие в турнире обжор. По результатам трёх туров судья заполнил таблицу, где указал, сколько пирогов в каждом туре съел каждый участник. Оказалось, что все числа в таблице различны. Ночью каждый из участников увеличил только один из своих результатов в таблице на 1. Утром все увидели следующую таблицу.
Ответ: см. файл выше
11)На клетчатой бумаге нарисован прямоугольник 3х4 клетки. Разрежьте его по сторонам клеток на 3 части так, чтобы из них можно было сложить фигуру, изображенную справа.
Ответ: вариант разрезания приведен: 1-я часть с цифрами «1», 2-я часть – «2» и 3-я часть – «3». Из них легко складывается нужная фигура.
12)Мальвина написала на доске выражение М+А = Т+Е = М+А+Т = И+К+А и попросила Буратино заменить все буквы цифрами так, чтобы равенства оказались верными. Причем разные буквы нужно заменять разными цифрами, а одинаковые буквы ‒ одинаковыми цифрами. Помогите Буратино справиться с задачей. Достаточно привести хотя бы один пример.
Ответ: пусть М=5, А=2, Т=0, Е=7, И=1, К=4. Тогда получим верные равенства: 5+2=0+7=5+2+0=1+4+2.
13)Семи детям раздали 55 конфет. После этого первыйсказал, что по крайней мере 1 конфета у него имеется. «А у меня ровно на две больше!» — сказал второй. «А у меня ровно на две больше, чем у тебя!» — сказал третийвторому, затем такую же фразу произнес четвертый— третьему, пятый – четвертому, шестой— пятому. А седьмой заявил: «А у меня конфет больше всех!». Сколько конфет получил седьмой ребенок? Найдите все варианты и докажите, что других нет.
Ответ: 13 или 19
14)У Алисы есть три деревянных кубика. Длина ребра меньшего кубика равна 1 дм, среднего — 2 дм, большего — 3 дм. На покраску меньшего кубика ей потребовалось на 120 г краски меньше, чем на покраску среднего кубика. Сколько граммов краски ей потребуется на покраску большего кубика?
Ответ: 360 г.
15)Чтобы насытиться, голодному кролику нужно съесть ровно три каких-нибудь различных овоща. Какое наибольшее количество голодных кроликов можно накормить досыта, если в запасах имеется 5 кукуруз, 8 огурцов, 11 морковок и 17 перцев? Ответ нужно обосновать.
Ответ: 12
16)На клетчатой бумаге нарисован прямоугольник 3х4 клетки. Разрежьте его по сторонам клеток на 3 части так, чтобы из них можно было сложить фигуру, изображенную справа.
Ответ: вариант разрезания приведен: 1-я часть с цифрами «1», 2-я часть – «2» и 3-я часть – «3». Из них легко складывается нужная фигура.
17)Замените буквы A, B, C, D, E, F, G, K цифрами от 1 до 8 без повторений так, чтобы числа 6, 11, 16, 21 в серых треугольниках являлись суммами цифр, стоящих в трёх белых треугольниках, соседствующих по сторонам с серым.
Ответ: подходящие значения букв: А=2, В=3, С=5, D=1, Е=8, F=4, G=6, К=7. Легко проверить, что условие задачи выполняется.
18)Рыбак поймал 6 кг рыбы. Часть приготовил себе, остальное отдал трём котам. Каждый кот съедает в 2 раза больше рыбы, чем рыбак за одно и то же время. Сколько килограммов рыбы было отдано котам, если есть все начали одновременно, а коты съели свою часть в 2 раза быстрее, чем рыбак?
Ответ: 4,5 кг.
19)Три одинаковых кубика приставлены друг к другу гранями с одинаковым числом очков. Найдите сумму чисел на трёх нижних гранях кубиков данной конструкции, на верхних гранях которых числа 3, 5 и 6.
Ответ: 7
20)Лиса Алиса, Буратино и Пьеро нашли 110 золотых монет. Алиса предложила разложить их на три кучки и сказала: «Пусть жребий определит, кому какая достанется!» Чтобы мальчики не расстраивались, они договорились уравнять свои кучки по меньшей, а лишнее отдать Алисе. (Например, если Буратино достанется 10 монет, Пьеро – 15, а Алисе – 85 монет, то Пьеро отдаст Алисе 5 монет, чтобы у него с Буратино стало поровну). Алисе необходимо разложить все монеты на три кучки так, чтобы в результате ей наверняка досталось не меньше 100 золотых монет. Сколько у нее есть вариантов?
Ответ: 15
21)Сколько раз в последовательности из 12 чисел: 2, _, _, _, _, _, _, _, _, _, _,1 (на первом месте стоит 2, на последнем месте 1) встретится цифра 2, если известно, что сумма любых трех чисел, идущих подряд, равна 5?
Ответ: 8 раз
22)На турнир «рыцарей и лжецов» математического кружка ребята мастерили из квадратного листа картона размером 150см×150см стену рыцарского замка. По краям и в середине было вырезано три одинаковых квадрата. Петя заметил, что при этом периметр первоначального листа увеличился на 8%. Найдите площадь получившейся «стены».
Ответ: 20772 см2
23)Петя и Вася живут в одном доме и выходят в школу одновременно. Петя сначала считает ворон и идет со скоростью 4 км/ч, но ровно на середине пути на парковке пересаживается на велосипед и едет со скоростью 12 км/ч. Вася идет в школу с постоянной скоростью и приходит в школу одновременно с Петей. Учитель Степан Иванович на середине пути обгоняет Петю на мопеде, так как его скорость в 5 раз больше скорости Васи, он приезжает в щколу на 3 минуты раньше мальчиков. Найдите расстояние от дома мальчиков до школы.
Ответ: 2км
24)По данным, изображенным на рисунке справа, найти длину катета BC прямоугольного треугольника АВС.
Ответ: 12
25)Какое наибольшее число «тетраминошек» (как на рисунке) можно разместить внутри квадрата 6×6 без наложений? Фигурки можно как угодно поворачивать и переворачивать.
Ответ: 8
26)Назовем прямоугольник «симпатичным», если его длинная сторона меньше удвоенной короткой. (В частности, квадрат является симпатичным прямоугольником). Разрежьте квадрат площади 100 на четыре симпатичных прямоугольника с площадями 10, 20, 30 и 40.
27)В системе координат изобразили графики функций y x a , y ax b и y bx . Причем ось Оу, идущую, как обычно, «снизу вверх» перпендикулярно оси Ох, стерли. Восстановите ось Оу.
28)Винни-Пух заготовил мёд на зиму в нескольких полных горшочках по 5 литров каждый. Если бы он свои запасы мёда разлил в 4-литровые горшочки, то их потребовалось бы на четыре больше, правда, один горшочек оказался бы неполным. А если разлить весь мёд в горшочки по 7 литров, то их потребовалось бы на четыре меньше первоначального количества. Но один горшочек снова оказался бы неполным. Сколько горшочков мёда заготовил Винни-Пух?
29)Из вершин А, В и С треугольника АВС провели соответственно медиану АМ, биссектрису ВK и высоту СH. Оказалось, что середина отрезка ВK совпадает с серединой отрезка MH. Найдите углы треугольника АВС.
30)На каникулах для всех желающих провели турнир по шашкам. Каждый сыграл с каждым ровно одну партию. За победу в партии участник турнира получал 2 очка, за ничью – 1 очко, за проигрыш – 0 очков. Известно, что среди участников мальчиков было в десять раз больше, чем девочек, и они вместе набрали в 4,5 раза больше очков, чем девочки. Сколько очков набрала самая успешная девочка?
31)Девятиклассник Дима выписывает ряд последовательных трёхзначных чисел так, чтобы каждое число делилось нацело на свою последнюю цифру. Какое наибольшее количество чисел могло быть в этом ряду?
32)Имеется сталь двух сортов с содержанием никеля 55% и 12%. Сколько нужно взять металла каждого из сортов, чтобы получить 2021 т стали с содержанием 32% никеля?
33)Вася выписывает последовательность из 2021 натуральных чисел, начиная с некоторого числа, так, чтобы сумма любых трех подряд идущих чисел была равна 5. Какое наибольшее количество двоек у него может получиться?
34)На стороне ВС треугольника АВС выбрана точка F. Оказалось, что отрезок AF пересекает медиану BD в точке Е так, что АЕ = ВС. Докажите, что BF = FE.
35)Имеются две бочки с водой бесконечной вместимости и два ковшика объемами 2 и 2 2 литров. Можно ли, пользуясь этими ковшиками, перелить из одной бочки в другую ровно 1 литр?
36)От 2 кусков сплавов с разным содержанием свинца массой 6 кг и 12 кг отрезали по куску равной массы. Каждый из отрезанных кусков сплавили с остатком другого сплава, после чего процентное содержание свинца в обоих сплавах стало одинаковым. Каковы массы отрезанных кусков?
37)Художник Петров красит плоскость в два цвета произвольным образом, а геометр Васильев утверждает, что сможет построить треугольник с вершинами одного цвета, величины углов которого относятся как 4:2:1. Прав ли он?
Источник
Пракикум «Решение задач по комбинаторике»
Разделы: Математика
Комбинаторика – это раздел математики, посвящённый решению задач выбора и расположения элементов некоторого множества в соответствии с заданными правилами. Комбинаторика изучает комбинации и перестановки предметов, расположение элементов, обладающее заданными свойствами. Обычный вопрос в комбинаторных задачах: сколькими способами….
К комбинаторным задачам относятся также задачи построения магических квадратов, задачи расшифровки и кодирования.
Рождение комбинаторики как раздела математики связано с трудами великих французских математиков 17 века Блеза Паскаля (1623–1662) и Пьера Ферма (1601–1665) по теории азартных игр. Эти труды содержали принципы определения числа комбинаций элементов конечного множества. С 50-х годов 20 века интерес к комбинаторике возрождается в связи с бурным развитием кибернетики.
Основные правила комбинаторики – это правило суммы и правило произведения.
Если некоторый элемент А можно выбрать n способами, а элемент В можно выбрать m способами, то выбор «либо А, либо В» можно сделать n + m способами.
Например, Если на тарелке лежат 5 яблок и 6 груш, то один плод можно выбрать 5 + 6 = 11 способами.
Если элемент А можно выбрать n способами, а элемент В можно выбрать m способами, то пару А и В можно выбрать n • m способами.
Например, если есть 2 разных конверта и 3 разные марки, то выбрать конверт и марку можно 6 способами (2 • 3 = 6).
Правило произведения верно и в том случае, когда рассматривают элементы нескольких множеств.
Например, если есть 2 разных конверта, 3 разные марки и 4 разные открытки, то выбрать конверт, марку и открытку можно 24 способами (2 • 3 • 4 = 24).
Произведение всех натуральных чисел от 1 до n включительно называется n – факториалом и обозначается символом n!
Например, 5! = 1 • 2 • 3 • 4 • 5 = 120.
Принято считать 0! равным 1.
Число перестановок из n равна n!
Например, если есть 3 шарика – красный, синий и зелёный, то выложить их в ряд можно 6 способами (3 • 2 • 1 = 3! = 6).
Иногда комбинаторная задача решается с помощью построения дерева возможных вариантов.
Например, решим предыдущую задачу о 3-х шарах построением дерева.
Практикум по решению задач по комбинаторике.
ЗАДАЧИ и решения
1. В вазе 6 яблок, 5 груш и 4 сливы. Сколько вариантов выбора одного плода?
2. Сколько существует вариантов покупки одной розы, если продают 3 алые, 2 алые и 4 жёлтые розы?
3. Из города А в город В ведут пять дорог, а из города В в город С ведут три дороги. Сколько путей, проходящих через В, ведут из А в С?
4. Сколькими способами можно составить пару из одной гласной и одной согласной букв слова «платок»?
гласные: а, о – 2 шт.
согласные: п, л, т, к – 4 шт.
5. Сколько танцевальных пар можно составить из 8 юношей и 6 девушек?
6. В столовой есть 4 первых блюда и 7 вторых. Сколько различных вариантов обеда из двух блюд можно заказать?
Ответ: 28 вариантов.
7. Сколько различных двузначных чисел можно составить, используя цифры 1, 4 и 7, если цифры могут повторяться?
1 цифра – 3 способа
2 цифра – 3 способа
3 цифра – 3 способа
Ответ: 9 различных двузначных чисел.
8. Сколько различных трёхзначных чисел можно составить, используя цифры 3 и 5, если цифры могут повторяться?
1 цифра – 2 способа
2 цифра – 2 способа
3 цифра – 2 способа
Ответ: 8 различных чисел.
9. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры могут повторяться?
1 цифра – 3 способа
2 цифра – 4 способа
Ответ: 12 различных чисел.
10. Сколько существует трёхзначных чисел, у которых все цифры чётные?
1 цифра – 4 способа
2 цифра – 5 способов
3 цифра – 5 способов
Ответ: существует 100 чисел.
11. Сколько существует четных трёхзначных чисел?
1 цифра – 9 способов (1, 2, 3, 4, 5, 6, 7, 8, 9)
2 цифра – 10 способов (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
3 цифра – 5 способов (0, 2, 4, 6, 8)
Ответ: существует 450 чисел.
12.Сколько различных трёхзначных чисел можно составить из трёх различных цифр 4, 5, 6?
1 цифра – 3 способа
2 цифра – 2 способа
3 цифра – 1 способ
Ответ: 6 различных чисел.
13. Сколькими способами можно обозначить вершины треугольника, используя буквы А, В, С, D?
1 вершина – 4 способа
2 вершина – 3 способа
3 вершина – 2 способа
14. Сколько различных трёхзначных чисел можно составить из цифр 1, 2, 3, 4, 5,при условии, что ни одна цифра не повторяется?
1 цифра – 5 способов
2 цифра – 4 способа
3 цифра – 3 способа
Ответ: 60 различных чисел.
15. Сколько различных трёхзначных чисел, меньших 400, можно составить из цифр 1, 3, 5, 7, 9, если любая из этих цифр может быть использована только один раз?
1 цифра – 2 способа
2 цифра – 4 способа
3 цифра – 3 способа
Ответ: 24 различных числа.
16. Сколькими способами можно составить флаг, состоящий из трёх горизонтальных полос различных цветов, если имеется материал шести цветов?
1 полоса – 6 способов
2 полоса – 5 способов
3 полоса – 4 способа
17. Из класса выбирают 8 человек, имеющих лучшие результаты по бегу. Сколькими способами можно составить из них команду из трёх человек для участия в эстафете?
1 человек – 8 способов
2 человек – 7 способов
3 человек – 6 способов
18. В четверг в первом классе должно быть четыре урока: письмо, чтение, математика и физкультура. Сколько различных вариантов расписания можно составить на этот день?
1 урок – 4 способа
2 урок – 3 способа
3 урок – 2 способа
4 урок – 1 способ
19. В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки разные?
1 урок – 8 вариантов
2 урок – 7 вариантов
3 урок – 6 вариантов
4 урок – 5 вариантов
5 урок – 4 варианта
8 • 7 • 6 • 5 • 4 = 6720
20. Шифр для сейфа составляется из пяти различных цифр. Сколько различных вариантов составления шифра?
1 цифра – 5 способов
2 цифра – 4 способа
3 цифра – 3 способа
4 цифра – 2 способа
5 цифра – 1 способ
5 • 4 • 3 • 2 • 1 = 120
21. Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов?
22. Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с нуля и 9?
1 цифра – 8 способов
2 цифра – 10 способов
3 цифра – 10 способов
4 цифра – 10 способов
5 цифра – 10 способов
6 цифра – 10 способов
7 цифра – 10 способов
8 • 10 • 10 • 10 • 10 • 10 • 10 = 8.000.000
23. Телефонная станция обслуживает абонентов, у которых номера телефонов состоят из 7 цифр и начинаются с 394. На сколько абонентов рассчитана эта станция?
№ телефона 394
10 • 10 • 10 • 10 = 10.000
24. Имеется 6 пар перчаток различных размеров. Сколькими способами можно выбрать из них одну перчатку на левую руку и одну перчатку на правую руку так, чтобы эти перчатки были различных размеров?
Левые перчатки – 6 способов
Правые перчатки – 5 способов (6 перчатка того же размера, что и левая)
25 . Из цифр 1, 2, 3, 4, 5 составляют пятизначные числа, в которых все цифры разные. Сколько таких чётных чисел?
5 цифра – 2 способа (две чётные цифры)
4 цифра – 4 способа
3 цифра – 3 способа
2 цифра – 2 способа
1 цифра – 1 способ
2 • 4 • 3 • 2 • 1 = 48
26. Сколько существует четырёхзначных чисел, составленных из нечётных цифр и делящихся на 5?
Нечётные цифр – 1, 3, 5, 7, 9.
Из них делятся на 5 – 5.
4 цифра – 1 способ (цифра 5)
3 цифра – 4 способа
2 цифра – 3 способа
1 цифра – 2 способа
27. Сколько существует пятизначных чисел, у которых третья цифра – 7, последняя цифра – чётная?
1 цифра – 9 способов (все, кроме 0)
2 цифра – 10 способов
3 цифра – 1 способ (цифра 7)
4 цифра – 10 способов
5 цифра – 5 способов (0, 2, 4, 6, 8)
9 • 10 • 1 • 10 • 5 = 4500
28. Сколько существует шестизначных чисел, у которых вторая цифра – 2, четвёртая – 4, шестая – 6, а все остальные – нечётные?
1 цифра – 5 вариантов (из 1, 3, 5, 7, 9)
2 цифра – 1 вариант (цифра 2)
3 цифра – 5 вариантов
4 цифра – 1 вариант (цифра 4)
5 цифра – 5 вариантов
6 цифра – 1 вариант (цифра 6)
5 • 1 • 5 • 1 • 5 • 1 = 125
29.Сколько различных чисел, меньших миллиона, можно записать с помощью цифр 8 и 9?
Однозначных – 2
Двузначных – 2 • 2 = 4
Трёхзначных – 2 • 2 • 2 = 8
Четырёхзначных – 2 • 2 • 2 • 2 =16
Пятизначных – 2 • 2 • 2 • 2 • 2 = 32
Шестизначных – 2 • 2 • 2 • 2 2 • 2 = 64
Всего: 2 + 4 + 8 + 16 + 32 + 64 = 126
30. В футбольной команде 11 человек. Нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?
Капитан – 11 способов
Заместитель – 10 способов
31.В классе учатся 30 человек. Сколькими способами из них можно выбрать старосту и ответственного за проездные билеты?
Староста – 30 способов
Ответ. за билеты – 29 способов
32. В походе участвуют 12 мальчиков, 10 девочек и 2 учителя. Сколько вариантов групп дежурных из трёх человек (1 мальчик, 1 девочка, 1 учитель) можно составить?
33. Сколько комбинаций из четырёх букв русского алфавита (в алфавите всего 33 буквы) можно составить при условии, что 2 соседние буквы будут разными?
1 буква – 33 способа
2 буква – 32 способа
3 буква – 32 способа
4 буква – 32 способа
Источник