Включения химический состав значение способы окраски волютиновых зерен

Включения химический состав значение способы окраски волютиновых зерен

Жгутики бактерий очень тонки и легко отрываются. Поэтому обнаружить их можно только при специальной окраске или с помощью электронного микроскопа.

Выявить жгутики у бактерий, применив обычные способы окраски анилиновыми красителями невозможно.

Жгутики, как правило, становятся видимы, если препарат предварительно обработать протравой, а потом окрасить. Протравленный препарат легче воспринимает окраску, но самое главное то, что жгутики при осаждении на них протравы увеличиваются и становятся видимыми при микроскопировании.

Существуют разные способы окраски жгутиков, но в каждом отдельном случае в зависимости от индивидуальных свойств микробов приходится выбирать тот или иной способ.

Для успешной окраски жгутиков должны соблюдаться следующие условия:
1. Чистота предметных и покровных стекол должна быть идеальной.
2. Препарат должен готовиться из свежей агаровой суспензии культуры не старше суточной, а для некоторых видов (вибрион, сенная палочка) не старше 12 часов. Часть материала, взятую из посевной черты (ближе к конденсационной воде), где больше влаги переносят в пробирку с 1 – 2 мл стерильной водопроводной воды. Пробирки выдерживают 30 60 минут при комнатной температуре, затем взвесь бактерий переносится в каплю стерильной водопроводной воды или физиологического раствора, нанесенную на покровное стекло. При распределении материала на покровном стеклышке, надо соблюдать осторожность, чтобы механически не повредить жгутики инее оторвать их от тела бактерий.

Мазок должен быть тонким, чтобы особи могли расположиться изолировано друг от друга.

Воду на стекле следует распределять тонким слоем, чтобы ускорить высыхание препарата и уменьшить потерю жгутиков.

Наиболее часто для окрашивания жгутиков используют способ Леффлера (Loffler). Методика окраски:
1. На высушенный и зафиксированный мазок наливают протраву в таком количестве, чтобы покрыть всю поверхность покровного стеклышка, и выдерживают 3 – 5 минут при комнатной температуре.
2. По истечении указанного времени препарат осторожно и тщательно промывают проточной водой.
3. На препарат наносят раствор фуксина (1 часть насыщенного спиртового раствора фуксина на 10 частей воды) и препарат прогревают над пламенем до появления пара.
4. Препарат промывают водой и микроскопируют.

Приготовление протравы для выявления жгутиков бактерий:
12г танина растворяют при нагревании в 48 мл воды и к этому раствору прибавляют 30 мл насыщенного раствора фуксина в 95% этиловом спирте. Раствор отфильтровывают и хранят в стеклянной емкости с притертой пробкой. Протрава готова к употреблению через несколько дней после приготовления и может сохраняться в течение нескольких месяцев.

Для обнаружения жгутиков у простейших препараты можно окрашивать простым способом, используя метиловый синий, раствор Люголя или сложным методом по Романовскому – Гимза.

Выявление капсул у бактерий

Капсулы не обладают выраженным сродством к основным красителям, поэтому для обнаружения капсул применяют различные способы приготовления микропрепаратов и их окраски, учитывая особенности образования и сохранения капсул у разных видов бактерий.

Для обнаружения капсулы необходимо наличие окрашенного внутри капсулы фона и окрашенного наружного фона.

Внутренний фон представлен окрашенной микробной клеткой, находящейся внутри капсулы. А наружный фон, окружающий капсулу, может быть естественным или искусственным.

Если микроб сохраняет капсулу постоянно, т.е. не только внутри макроорганизма, но и на питательной среде (клебсиеллы), то препарат для обнаружения капсул можно приготовить из культуры, выращенной in vitro на питательной среде. И в таком случае наружный фон создается искусственно.

Если микроб образует и сохраняет капсулу только внутри макроорганизма (возбудители сибирской язвы, чумы, пневмококки), то в таком случае делается мазок – отпечаток из пораженного органа погибшего макроорганизма (из печени, селезенки, лимфатических узлов) или из мокроты, содержимого бубона, крови. Наружный фон капсулы будет представлен тканевыми клетками.

Микропрепарат из культуры клебсиелл для обнаружения у них капсулы можно окрасить по методу Бурри – Гинса:
1. На чистое предметное стекло наносится небольшая капля черной туши и капля взвеси суточной агаровой культуры капсульных бактерий. Смесь осторожно перемешивается петлей , после чего другим предметным стеклом делается мазок, подобно мазку крови.
2. После подсушивания на воздухе и фиксации в пламени горелки препарат докрашивают в течение 2 – 3 минут карболовым фуксином Циля, разбавленным дистиллированной водой 1:1.
3. По окончании препарат осторожно промывается струей холодной воды, высушивается и микроскопируется. На темном тушевом фоне будут видны окрашенные микробные клетки окруженные бесцветной капсулой. При отсутствии капсулы, к клетке окрашенной фуксином, черный фон примыкает вплотную.

Читайте также:  Политический процесс это способы

В том случае, если микропрепарат готовится из исследуемого материала, мазок может быть окрашен одним анилиновым красителем, по методу Грамма, по методу Романовскго – Гимза. В каждом из этих трех споосбов окраски на фоне окрашенных тканевых клеток, будет видна бесцветная капсула, окружающая окрашенную микробную клетку. Обнаружение спор.

Благодаря толщине свое оболочки и плотности содержимого, споры остаются неокрашенными при обработке препарата анилиновыми красителями простым методом или сложным по Граму.

При окраске по Граму или по Леффлеру спора внутри окрашенной цитоплазмы микробной клетки выглядит как зернышко круглой или овальной формы, сильно преломляющее свет.

Существует несколько методов окраски спор (по Циль – Нильсену, по Ганзену, по Ожешко и др.) позволяющих достигнуть контрастной окраски спор в цитоплазме.

Методика окраски микропрепарата:
1) На фиксированный препарат накладывается полоска фильтровальной бумаги (для защиты препарата от оседающих кристаллов красителя) и на нее наливается карболовый фуксин Циля. Препарат осторожно прогревается в течение 3 – 4 минут над пламенем горелки. По мере испарения жидкости краситель добавляется.
2) Фильтровальная бумага снимается и на мазок наносится 2 – 3 капли 5% раствора кислоты (серной, соляной, азотной или уксусной) на 30 секунд.
3) Препарат тщательно промывается струей холодной воды и высушивается.
4) Докрашивается раствором метиленовой сини Леффлера в течение 1 – 2 минут.
5) Препарат промывается струей воды, высушивается и микроскопируется. На голубом фоне цитоплазмы видны сиренево – красные споры.

Этот метод позволяет обнаружить споры не только в процессе их формирования внутри клетки, но и после того как сформированная спора высыпалась из разрушившейся микробной клетки.

Приготовление карболового фуксина Циля:
10 мл. насыщенного спиртового раствора фуксина растворяют в 100 мл 5% раствора карболовой кислоты.

Обнаружение зерен волютина

Зерна волютина (запасные вещества полифосфатной природы) можно обнаружить в клетках многих микроорганизмов.

У бактерий и актиномицетов гранулы волютина располагаются в цитоплазме, у дрожжей и грибов – в вакуолях. Как правило, зерен волютина больше в молодых клетках.

В неокрашенном состоянии крупные зерна волютина выделяются от остальной плазмы большей светопреломляемостью.. Однако лучше наличие зерен волютина определяется в окрашенных препаратах. Для обнаружения зерен волютина применяется окраска метиловой синью по Леффлеру. Зерна волютина при этом окрашиваются в сине – фиолетовый цвет, а протоплазма – в голубой.

Дифференциальная окраска зерен волютина может быть достигнута различными способами окраски, в том числе и способом Нейссера (Neisser). Нейссер разработал и предложил для выявления зерен волютина в клетках дифтерийных бактерий.

При окраске по способу Нейссера зерна волютина окрашиваются в синий или темно – коричневый цвет, а протоплазма – в светло – коричневый.

Зерна волютина можно выявить окраской по способу Омелянского. Для этого на фиксированный мазок наливают карболовый фуксин Циля на 30 секунд. После чего краску сливают, препарат промывают водой и обесцвечивают в течение 30 – 40 секунд 1% раствором серной кислоты. Затем кислоту сливают, препарат промывают водой и докрашивают метиловым синим в разведении 1:40 в течение 30 секунд. После промывки водой препарат высушивают и микроскопируют.

Зерна волютина при этом способе окраски окрашиваются в сиренево – красный цвет и хорошо видны на фоне синей цитоплазмы.

При окраске препарата по методу Грама зерна волютина по тональности и интенсивности окраски не дифференцируются от цитоплазмы, поэтому окраску по методу Грама для выявления зерен волютина применять не имеет смысла.

У некоторых микроорганизмов запасные вещества накапливаются в виде гранул углеводной природы. Их можно выявить при обработке клеток раствором Люголя. Гранулы крахмалоподобных веществ окрашиваются в синий, а гранулы гликогеноподобных полисахаридов – в красновато – коричневый цвет.

Окрашивание микропрепаратов из исследуемого материала

Микропрепараты из крови окрашивают по Романовскому – Гимза, фуксином, метиловым синим или другими анилиновыми красителями.

Читайте также:  Медиация как способ разрешения конфликтов презентация

Для наблюдения вегетативных стадий кишечных простейших пользуются прижизненной окраской паразитов раствором Люголя, слабыми растворами основных красителей (эозин, метиловый синий и др.) в разведении 1:1000 и даже 1: 10000. Для более подробного изучения паразитов, препараты фиксируют жидкими фиксаторами (жидкость Шаудина, метиловый или этиловый спирт) и окрашивают гематоксилином, метиловым синим, фуксином, краской Романовского.

При микроскопическом исследовании мазков мочи, спинномозговой жидкости, мокроты фиксированные препараты окрашивают по Граму, по Романовскому — Гимза, метиловым синим

Фиксированные микропрепараты из гнойного содержимого язв, пунктатов бубонов, лимфатических узлов в зависимости от предполагаемого возбудителя окрашивают по Граму, по Бури, по Романовскому – Гимза, серебрением по Морозову.

Источник

6.9. Окраска зерен волютина

В цитоплазме некоторых видов бактерий содержатся вклю­чения в виде гранул гликогена, полисахаридов, поли-р-масля-ной кислоты и волютина – полифосфата.

Волютин накапливается при избытке питательных веществ в окружающей среде. В клетке он выполняет роль запасных веществ для питания и энергетических потребностей. Волютин имеет большое дифференциально-диагностическое значение, поскольку среди патогенных микробов обнаруживается с боль­шим постоянством только у С.diphtheriae и Р.mallei

Зерна волютина обладают метахромазией и легко выявля­ются с помощью специальных методов окраски.

6.9.1. Окраска зерен волютина по способу Нейссера

  • Фиксированный на пламени горелки мазок окрашивают 1–2 мин синькой Нейссера (рецепт 10);
  • синьку сливают, на препарат наносят несколько капель рас­твора Люголя (рецепт 34) на 1 мин;
  • мазок промывают водой, подсушивают;
  • докрашивают раствором хризоидина (рецепт 21) или везу-вина (рецепт 22) 2–3 мин;
  • промывают водой, подсушивают, микроскопируют. Зерна волютина, расположенные на полюсах клетки, окрашивают­ся в синий цвет, тела микробных клеток – в светло-корич­невый.

Примечание. В настоящее время кроме обычной световой микроскопии широкое применение дня диагностических целей находит более совершен­ный метод люминесцентной (флюоресцентной) микроскопии, изложен­ный в главе М.Я.Корна «Микроскопические методы исследования».

Источник

19. Волютиновые зёрна. Химический состав. Функции. Способы окраски.

Характерны только для дифтерийной палочки.

Располагаются по полюсам и интенсивно прокрашиваются (метахромазия).

По химическому составу – полифосфаты.

Играют диагностическую и трофическую роль.

Выявляются простым методом окраска – Окраска метиленовым синим в течение 20-30 секунд (тёмно-синие зёрна на полюсах светло-голубых тел бактерий) и сложным методом – по Нейссеру.

Окраска по Нейссеру: 1. На фиксированный мазок наносят ацетат синьки Нейссера – 2 минуты, промывают водой. 2. Наносят раствор Люголя на 30 секунд и промывают водой. 3. Везувин на 1 минуту, промывают водой, высушивают, микроскопируют.

Результат: зёрна волютина, имеющие щелочную реакцию, воспринимают синьку и окрашиваются в тёмно-синий цвет. Цитоплазма с кислой рН воспринимает везувин и окрашивается в жёлтый цвет.

20. Простые и сложные методы окраски. Механизм окраски по Граму.

Способы окрашивания микробов делятся на простые и сложные, или дифференциальные.

При простой окраске употребляется только один краситель, чаще всего — фуксин Пфейффера (экспозиция 1-2 мин), или синька Леффлера (экспозиция 3-5 мин). Их относят к группе анилиновых красителей. Сложные, или дифференциальные способы окраски бактерий основаны на особенностях физико-химического строения микробной клетки, и применяются для детального изучения структуры клетки, также для дифференциации данного микроба от других. Способность микробов воспринимать красители называется тинкториальными свойствами.

Источник

Химический состав бактериальной клетки. Включения бактерий. Методы их выявления.

В состав микроорганизмов входят вода, белки, нуклеиновые кислоты, углеводы, липиды,

Вода. Основной компонент бактериальной клетки, составляющий около 80 % ее массы. Она

находится в свободном или связанном состоянии со структурными элементами клетки. В спорах количество воды уменьшается до 18.20 %. Вода является растворителем для многих веществ, а также выполняет механическую роль в обеспечении тургора. При плазмолизе. Потере клеткой воды в гипертоническом растворе. Происходит отслоение протоплазмы от клеточной оболочки. Удаление воды из клетки, высушивание приостанавливают процессы метаболизма. Большинство микроорганизмов хорошо переносят высушивание. При недостатке воды микроорганизмы не размножаются. Высушивание в вакууме из замороженного состояния (лиофилизация) прекращает размножение и способствует длительному сохранению микробных особей. Белки (40.80 % сухой массы) определяют важнейшие биологические свойства бактерий и состоят обычно из сочетаний 20 аминокислот. В состав бактерий входит диаминопимелиновая кислота (ДАП), отсутствующая в клетках человека и животных. Бактерии содержат более 2000 различных белков, находящихся в структурных компонентах и участвующих в процессах метаболизма. Большая часть белков обладает ферментативной активностью. Белки бактериальной клетки обусловливают антигенность и иммуногенность, вирулентность, видовую принадлежность бактерий. Нуклеиновые кислоты бактерий выполняют функции, аналогичные нуклеиновым кислотам эукариотических клеток: молекула ДНК в виде хромосомы отвечает за наследственность, рибонуклеиновые кислоты (информационная, или матричная, транспортная и рибосомная) участвуют в биосинтезе белка. Бактерии можно характеризовать (таксономически) по содержанию суммы гуанина и цитозина (ГЦ) в молярных процентах (М%) от общего количества оснований ДНК. Более точной характеристикой микроорганизмов является гибридизация их ДНК. Основа метода гибридизации ДНК. Способность денатурированной (однонитчатой) ДНК ренатурироваться, т.е. соединяться с комплементарной нитью ДНК и образовывать двухцепочечную молекулу ДНК. Углеводы бактерий представлены простыми веществами (моно- и дисахариды) и комплексными соединениями. Полисахариды часто входят в состав капсул. Некоторые внутриклеточные полисахариды (крахмал, гликоген и др.) являются запасными питательными веществами.Липиды в основном входят в состав цитоплазматической мембраны и ее производных, а также клеточной стенки бактерий, например наружной мембраны, где, кроме биомолекулярного слоя липидов, имеется ЛПС. Липиды могут выполнять в цитоплазме роль запасных питательных веществ. Липиды бактерий представлены фосфолипидами, жирными кислотами и гли-церидами.

Читайте также:  Способ обогрева котлов пищеварочных

Наибольшее количество липидов (до 40 %) содержат микобактерии туберкулеза. Минеральные вещества бактерий обнаруживают в золе после сжигания клеток. В большом количестве выявляются фосфор, калий, натрий, сера, железо, кальций, магний, а также микроэлементы (цинк, медь, кобальт, барий, марганец и др.). Они участвуют в регуляции осмотического давления, рН среды, окислительно-восстановительного потенциала, активируют ферменты, входят в состав ферментов, витаминов и структурных компонентов микробной клетки.

Включения – это не обязательный компонент бактериальной клетки. Они разнообразны по форме, химическому составу и назначению. Они могут быть твердыми, жидкими и газообразными. Принято различать 2 типа включений: ограниченные белковой мембраной и лишенные мембран.

Газовые вакуоли относятся к мембранным включениям. Это преимущественно полые цилиндры длиной до 1000 нм и диаметром около 80 нм. Состав газа в вакуолях соответствует газовому составу окружающей среды. Наиболее богата газовыми вакуолями цитоплазма водных бактерий.

Основная масса включений – это запасные питательные вещества. К таким образованиям относят полисахаридные, волютиновые, поли-бета-оксимасляные включения.

Полисахаридные включения бывают размером до 200 нм и лишены мембраны. Накопление полисахаридов обычно стимулируется недостатком азота и регулируется на уровне генома. Аккумулированный полисахарид служит источником энергии и углерода.

Накопление поли-бета-оксимасляной кислоты характерно только для прокариот. Гранулы этого вещества округлены в цитоплазме белковой мембраной. Образующиеся при распаде гранул вещества используются для роста бактериальной клетки.

Конгломераты волютина образованы преимущественно полифосфатами и выглядят в виде округлых телец размером до 1 мкм. Волютин способен раствориться в щелочах и горячей воде. Свое название волютин получил от названия бактерии Spirillum volutans, где, как считали раньше, это вещество способно накапливаться в виде зерен. Намного позже выяснили, что эти зерна состоят из поли-бета-оксимасляной кислоты, а не из волютина.

Основное назначение волютиновых зерен — источник фосфора и энергии.

В цитоплазме бактерий могут находиться различные по своей природе включения, такие как липопротеидные тельца, гликоген, гранулеза, пигментные скопления, сера, кальций. У некоторых бактерий в цитоплазме встречаются зерна волютина. Включения волютина хорошо выражены у Spirillum volutans, по наименованию которых волютин получил название, у Bacillus subtilis, а также у возбудителей сибирской язвы и дифтерии. Гранулы волютина имеют относительно крупные размеры, окрашиваются различными красителями, изменяя цвет последних. Например, при окрашивании метилено-вым синим волютин окрашивается в ярко-красный цвет (например, при окраске по методу Леффлера). Такое явление получило название метахромазии. Гранулы волютина представлены полифосфатами — запасным веществом, которое служит источником фосфатных групп. Наличие гранул волютина учитывают при лабораторной диагностике дифтерии, так как для этого возбудителя характерно биполярное расположение зерен. Метод Нейесера, используемый для выявления зерен волютина, основан на избирательной фиксации зернами волютина уксусно-метиленовой синьки Нейесера. При последующем окрашивании везувином зерна волютина, прочно фиксировавшие метиленовую синьку, остаются темно-синего (почти черного) цвета, а цитоплазма приобретает желтый цвет.

Поможем написать любую работу на аналогичную тему

Химический состав бактериальной клетки. Включения бактерий. Методы их выявления.

Химический состав бактериальной клетки. Включения бактерий. Методы их выявления.

Химический состав бактериальной клетки. Включения бактерий. Методы их выявления.

Источник

Оцените статью
Разные способы