- Визуальный способ измерения информации
- Презентация по теме «Измерение информации»
- Дистанционное обучение как современный формат преподавания
- Математика и информатика: теория и методика преподавания в образовательной организации
- Современные педтехнологии в деятельности учителя
- Оставьте свой комментарий
- Безлимитный доступ к занятиям с онлайн-репетиторами
- Подарочные сертификаты
- Визуальный способ измерения информации
- 1 Область применения
- 2 Термины и определения
- 3 Технические характеристики
- 4 Технические требования и рекомендации
Визуальный способ измерения информации
Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации.
Вопрос: «Как измерить информацию?» очень непростой. Ответ на него зависит от того, что понимать под информацией. Но поскольку определять информацию можно по-разному, то и способы измерения тоже могут быть разными.
Содержательный подход к измерению информации.
Для человека информация — это знания человека. Рассмотрим вопрос с этой точки зрения.
Получение новой информации приводит к расширению знаний. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.
Отсюда следует вывод, что сообщение информативно (т.е. содержит ненулевую информацию), если оно пополняет знания человека. Например, прогноз погоды на завтра — информативное сообщение, а сообщение о вчерашней погоде неинформативно, т.к. нам это уже известно.
Нетрудно понять, что информативность одного и того же сообщения может быть разной для разных людей. Например: «2×2=4» информативно для первоклассника, изучающего таблицу умножения, и неинформативно для старшеклассника.
Но для того чтобы сообщение было информативно оно должно еще быть понятно. Быть понятным, значит быть логически связанным с предыдущими знаниями человека. Определение «значение определенного интеграла равно разности значений первообразной подынтегральной функции на верхнем и на нижнем пределах», скорее всего, не пополнит знания и старшеклассника, т.к. оно ему не понятно. Для того, чтобы понять данное определение, нужно закончить изучение элементарной математики и знать начала высшей.
Получение всяких знаний должно идти от простого к сложному. И тогда каждое новое сообщение будет в то же время понятным, а значит, будет нести информацию для человека.
Сообщение несет информацию для человека, если содержащиеся в нем сведения являются для него новыми и понятными.
Алфавитный подход к измерению информации.
А теперь познакомимся с другим способом измерения информации. Этот способ не связывает количество информации с содержанием сообщения, и называется он алфавитным подходом.
При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.
Все множество используемых в языке символов будем традиционно называть алфавитом. Обычно под алфавитом понимают только буквы, но поскольку в тексте могут встречаться знаки препинания, цифры, скобки, то мы их тоже включим в алфавит. В алфавит также следует включить и пробел, т.е. пропуск между словами.
Полное количество символов алфавита принято называть мощностью алфавита. Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54.
При алфавитном подходе к измерению информации количество информации зависит не от содержания, а от размера текста и мощности алфавита.
При использовании двоичной системы (алфавит состоит из двух знаков: 0 и 1) каждый двоичный знак несет 1 бит информации. Интересно, что сама единица измерения информации «бит» получила свое название от английского сочетания «binary digit» — «двоичная цифра».
1 бит — это минимальная единица измерения информации!
Один символ алфавита «весит» 8 бит. Причем 8 бит информации — это настолько характерная величина, что ей даже присвоили свое название — байт.
Сегодня очень многие люди для подготовки писем, документов, статей, книг и пр. используют компьютерные текстовые редакторы. Компьютерные редакторы, в основном, работают с алфавитом размером 256 символов.
В любой системе единиц измерения существуют основные единицы и производные от них.
Для измерения больших объемов информации используются следующие производные от байта единицы:
Источник
Презентация по теме «Измерение информации»
Описание презентации по отдельным слайдам:
Информация. измерение информации
Понятие информации Информация – это общенаучное понятие. Используется в различных науках: информатике, физике, кибернетике, биологии, и т.д.
Понятие информации Слово «информация» происходит от латинского слова informatio, что в переводе означает сведение, разъяснение, ознакомление.
Подходы к понятию информации Традиционный Вероятностный
Традиционный подход Информация -это сведения об объектах и явлениях окружающего мира, их свойствах, характеристиках и состоянии.
Вероятностный подход под информацией понимается не любое сообщение, а лишь то, которое уменьшает неопределенность знаний о каком-либо событии у получателя информации.
Восприятие информации Человек воспринимает информацию из внешнего мира с помощью всех своих органов чувств, которые являются информационными каналами, связывающими человека с внешним миром. ЗРЕНИЕ зрительные образы ОБОНЯНИЕ запахи ВКУС вкусовые ощущения СЛУХ звуковые образы ОСЯЗАНИЕ тактильные ощущения
Виды информации По способу восприятия: Визуальная Аудиальная Тактильная Вкусовая обонятельная
Виды информации По форме представления: Графическая Числовая Текстовая Звуковая Табличная
Измерение информации Вся информация, обрабатываемая компьютером, представлена двоичным кодом с помощью двух цифр – 0 и 1. Эти два символа 0 и 1 принято называть битами Бит – наименьшая единица измерения объема информации.
Единицы измерения информации КОМПЬЮТЕРНЫЙ АЛФАВИТ русские (РУС) буквы латинские (LAT) буквы цифры (1, 2, 3, 4, 5, 6, 7, 8, 9, 0) математические знаки (+, -, *, /, ^, =) прочие символы («», №, %, , :, ;, #, &) Алфавит содержит 256 символов. 256 = 28 i=8 1 байт — информационный вес символа алфавита мощностью 256. 1 байт = 8 битов 1Кб= 1х1024х8=8192 битов
Единицы измерения Название Усл.обозн. Соотношение Байт Байт 1 байт =8бит Килобайт Кб 1 Кб =1024 байт=210.байт Мегабайт Мб 1 Мб =1024 Кб=220.байт Гигабайт Гб 1 Гб =1024 Мб=230.байт Терабайт Тб 1 Тб =1024 Гб=240.байт Петабайт Пб 1Пб=1024 Тб=250.байт Экзабайт Эб 1Эб=1024 Пб=260.байт
Единицы измерения Переведите 3,2 Гигабайт в Мегабайты 2078 байт в Килобайты 16 бит в байты
Подходы к измерению информации Содержательный (вероятностный) подход Сообщение, уменьшающее неопределенность знаний человека в два раза, несет для него 1 бит информации. Количество информации, заключенное в сообщении, определяется по формуле где N – количество равновероятных событий; i – количество информации (бит), заключенное в сообщении об одном из событий. N = 2i
Алфавит племени Пульти содержит 8 символов. Каков информационный вес символа этого алфавита? Задача 1 Дано Решение N=8 i – ? 8 = 2i. 23= 2i. i = 3. Ответ: 3 бита. N = 2i Соотношение, связывающее величины i и N Краткая запись условия задачи Вычисления
Подходы к измерению информации 2. Алфавитный подход основан на подсчете числа символов в сообщении Если допустить, что все символы алфавита встречаются в тексте с одинаковой частотой, то количество информации, заключенное в сообщении вычисляется по формуле:
Подходы к измерению информации 2. Алфавитный подход Ic – информационный объем сообщения (бит) К – количество символов в сообщении (символ) N – мощность алфавита (количество символов в нем) (символ) i — информационный объем 1 символа (бит) N = 2i Ic=K*i
Сообщение, записанное буквами 32-символьного алфавита, содержит 140 символов. Какое количество информации оно несёт? Задача 2 Дано Решение N = 32, K = 140 I – ? Ответ:
Информационное сообщение объёмом 720 битов состоит из 180 символов. Какова мощность алфавита, с помощью которого записано это сообщение? Задача 3 Ответ: Дано Решение
Задача 4 Сообщение, записанное буквами из 64 символьного алфавита, содержит 20 символов. Какой объем информации оно несет?
Задача 5 Информационное сообщение объёмом 4 Кбайта состоит из 4096 символов. Каков информационный вес символа этого сообщения? Сколько символов содержит алфавит, с помощью которого записано это сообщение? Ответ: Дано Решение
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 832 человека из 77 регионов
Курс профессиональной переподготовки
Математика и информатика: теория и методика преподавания в образовательной организации
- Сейчас обучается 598 человек из 75 регионов
Курс повышения квалификации
Современные педтехнологии в деятельности учителя
- Курс добавлен 23.09.2021
- Сейчас обучается 47 человек из 23 регионов
Ищем педагогов в команду «Инфоурок»
I. Образовательная
Формировать у учащихся понимание алфавитного подхода к измерению информации.
II. Развивающая
Развивать операциональное мышление и коммуникативную компетентность при обработке информации.
III. Воспитатетельная
Воспитывать восприятие компьютера как инструмента информационной деятельности человека и бережного отношения к компьютеру.
Задачи занятия:
познакомить учащихся с методом измерения информации в символьном сообщении;
повторить понятие алфавита, ввести понятие мощности алфавита;
научиться вычислять количество информации в тексте, составленном из символов определенного алфавита;
ввести понятие минимального машинного алфавита;
отработать навыки решения задач.
стериограммы для проведения физпаузы,
стенды с тематической информацией,
Номер материала: ДБ-113851
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Безлимитный доступ к занятиям с онлайн-репетиторами
Выгоднее, чем оплачивать каждое занятие отдельно
В Северной Осетии организовали бесплатные онлайн-курсы по подготовке к ЕГЭ
Время чтения: 1 минута
Путин попросил привлекать родителей к капремонту школ на всех этапах
Время чтения: 1 минута
В России выбрали топ-10 вузов по работе со СМИ и контентом
Время чтения: 3 минуты
В Минпросвещения предложили организовать телемосты для школьников России и Узбекистана
Время чтения: 1 минута
В Тюменской области продлили на неделю дистанционный режим для школьников
Время чтения: 1 минута
Минпросвещения будет стремиться к унификации школьных учебников в России
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Источник
Визуальный способ измерения информации
ГОСТ Р 52870-2007
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
СРЕДСТВА ОТОБРАЖЕНИЯ ИНФОРМАЦИИ КОЛЛЕКТИВНОГО ПОЛЬЗОВАНИЯ
Требования к визуальному отображению информации и способы измерения
Image of information means for collective use.
Requirements for visual image of information and measurement methods
Дата введения 2009-01-01
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»
Сведения о стандарте
1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-технический центр сертификации электрооборудования «ИСЭП»
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 452 «Безопасность аудио-, видео-, электронной аппаратуры, оборудования информационных технологий и телекоммуникационного оборудования»
4 ВВЕДЕН ВПЕРВЫЕ
Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом указателе «Национальные стандарты», а текст этих изменений — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационных указателях «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет
В настоящее время назрела потребность в разработке национального стандарта по единообразию измерений эргономических параметров средств отображения информации коллективного пользования (СОИКП), применяемых в центрах управления энергетическими ресурсами, диспетчерских центрах, промышленности, на транспорте, в аварийно-спасательных службах, а также информационных и рекламных щитах на стадионах, на улицах и в больших залах. Функциональное назначение СОИКП состоит в необходимости одновременной информации большого числа людей. Сами современные СОИКП представляют собой модульные светодиодные или плазменные панели со своими проекционными системами, которые компонуются в виде больших экранов и видеостен размером более 15 м со сложными коммутационными системами обеспечения заданного изображения. СОИКП включают в себя современные домашние кинотеатры.
Необходимость тестирования основных параметров СОИКП по заявлениям изготовителей, проектировщиков, поставщиков и потребителей объясняется увеличением числа подобной аппаратуры на рынке Российской Федерации. Отсутствие единообразия в терминологии и определении эксплуатационных характеристик СОИКП сдерживает свободное обращение СОИКП и может привести к неоправданным затратам изготовителя и потребителя. Настоящий стандарт устанавливает характеристики качества изображения информации на экране или щите СОИКП и применять методы их измерений с учетом принятых МЭК рекомендаций по световым и цветовым параметрам в соответствии с главой 845 «Освещение» МЭК 50 [1].
1 Область применения
Настоящий стандарт устанавливает технические требования и способы измерения параметров к средствам отображения информации коллективного пользования (СОИКП) по оптике, фотометрии и передаче цвета. Особенностями СОИКП являются: большие габариты экрана (диагональ экрана информационных и рекламных табло более 10 м); отображаемая информация предназначается большому числу наблюдателей; работа в сложных погодных и климатических условиях (снег, дождь, туман, ночь, ясный солнечный день, лето, зима и др.).
Самосветящиеся табло для закрытых помещений и на улице для большого числа наблюдателей работают на плазменных (газоразрядных) и светодиодных панелях, которые используют прямое излучение многопиксельных структур. Газоразрядные индикаторы характеризуются широким углом зрения не менее 160° и сравнительно большим энергопотреблением. Светодиодные табло имеют самую высокую яркость при относительно большом размере пикселей (
15 мм). Оба средства отображения информации коллективного пользования обладают контрастом 1000:1 в условиях большой внешней освещенности сроком службы не менее 100000 ч и отсутствием вредных электромагнитных полей и мерцания изображения.
2 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
2.1 кластер: Источник света, представляющий собой компактный прибор с некоторым числом светодиодов, помещенных в общий влагозащищенный и светоизолированный корпус. Существует множество различных вариантов конструктивного исполнения кластеров: по форме — цилиндрические, прямоугольные, шестигранные; по числу используемых светодиодов — от четырех до 62; по силе света и т.д. Если в кластере светодиоды одного цвета, то такой кластер — монохромный; если двух цветов — двухцветный; если красные, зеленые и синие — полноцветный.
2.2 яркость СД-экранов: Яркость, определяется типом и числом светодиодов каждого цвета, входящих в состав одного кластера. Наибольшая яркость и естественная передача цветов достигается использованием светодиодов с излучением зеленого цвета (длина волны 525 нм), красного цвета (длина волны 650 нм), синего цвета (длина волны 440 нм).
2.3 изображение экрана СОИКП: Воспроизведение компьютерной графики и анимации. Существуют табло, способные воспроизводить видеоизображение с телевизора, видеокамеры, видеомагнитофона или др. источников видеосигнала. Высота символов должна обеспечивать считывание информации с расстояния 50-500 м и в то же время не должны наблюдаться темные промежутки между светодиодами одного кластера и соседних кластеров.
2.4 видимое излучение: Оптическое излучение, которое может непосредственно вызвать зрительное ощущение.
2.5 цвет: Понятие цвет подразделяют на: цвет, воспринимаемый глазом, и психофизический цвет. Воспринимаемый цвет — свойство зрительного восприятия, сочетающее хроматические и ахроматические признаки. Данное свойство зрительного восприятия может быть описано при помощи названий хроматических цветов (желтый, оранжевый, красный, розовый, зеленый, голубой, фиолетовый и т.д.) или названиями ахроматических цветов (белый, серый, черный, тусклый, светлый, темный) или их комбинацией. Психофизический цвет — определение цветового стимула с помощью экспериментально определенных значений величин (например, трех координат цвета).
2.6 световой и цветовой стимул: Видимое излучение, попадающее в глаз и вызывающее ощущение света или цвета соответственно.
2.7 дневное, ночное или сумеречное зрение: Зрение нормального глаза при его световой, темновой адаптации или в промежутке между ними.
2.8 адаптация: Процесс изменения свойств органа зрения под воздействием световых и цветовых стимулов, экспозиция которых осуществляется в дневное время или несколько раньше или в ночное время, и которые имеют различную яркость, спектральный состав и угловые размеры. При световой адаптации яркость световых импульсов равна или превышает 10 кд/м , при темновой адаптации — не превышает 0,01 кд/м .
2.9 стандартный колориметрический наблюдатель МКО: Приемник излучения, колориметрические характеристики которого соответствуют функциям сложения в трехцветной колориметрической системе, например , , в принятой системе МКО XYZ 1931 г.
2.10 трехцветная колориметрическая система: Система определения цвета, основанная на возможности воспроизведения данного цвета путем аддитивного смешения трех соответственно выбранных основных цветовых стимулов.
2.11 цветность: Характеристика цветового стимула, определяемого его координатами цветности или доминирующей длиной волны и чистотой цвета.
2.12 график цветностей: Графическое изображение на плоскости, где точки, определяемые координатами цветности, однозначно соответствуют цветностям цветового стимула.
2.13 цветовой охват: Область на графике цветности (чаще всего в виде треугольника), заключенная между тремя координатами цветности основных цветов многоцветного излучателя с аддитивными свойствами.
2.14 яркость : Величина, определяемая по формуле , где — световой поток, переносимый пучком лучей, проходящим через данную точку и распространяющимся в телесном угле , содержащем данное направление; — площадь сечения данного пучка, — угол между нормалью к данному сечению и направлением пучка лучей. Единица измерения — кд/м .
2.15 габаритная яркость: Яркость излучающего элемента поверхности с учетом несветящих промежутков этого элемента, например, яркость одного светодиода равна 10 кд/м , а яркость одного кластера из пяти подобных светодиодов равна 10 кд/м . Если излучающее тело (поверхность) имеет вид спирали или хаотично (упорядоченно) расположенных излучающих элементов, то за площадь излучения принимают не только площадь излучающих элементов, но и площади неизлучающих промежутков между ними.
2.16 сила света : Отношение светового потока , кд, исходящего от источника и распространяющегося внутри телесного угла , . Единица измерения — кд.
2.17 освещенность : Отношение светового потока , падающего на поверхность, к площади этой поверхности . Единица измерения — лм/м =кд·ср/м .
2.18 коэффициент яркости : Отношение яркости тела в некотором определенном направлении к яркости совершенного отражающего рассеивателя, находящегося в тех же условиях облучения.
2.19 точечный источник: Источник излучения, размеры которого настолько малы по сравнению с расстоянием до облучаемой поверхности, что ими можно пренебречь в вычислениях и измерениях.
2.20 диаграмма направленности: Угловое распределение светового потока (яркости) пучка лучей, исходящего от экрана; оценивается по значению одной второй от максимального значения измеряемой величины при наблюдении по нормали к экрану (угол наблюдения — 0°).
2.21 контраст: Отношение яркости некоторого элемента изображения к яркости рядом расположенного фона. Различают контраст светлого изображения на темном фоне и темного изображения на светлом фоне. Значение контраста зависит от оптических свойств экрана и уровня облученности экрана посторонней внешней освещенности.
Формула расчета для определения контраста:
, (1)
где — яркость элемента изображения работающего экрана;
— яркость излучения фона. Фоновое излучение обуславливается свечением экрана, работающего в ждущем режиме за счет темнового тока, а также дополнительной яркостью излучения экрана, вызванной внешней освещенностью.
2.22 блескость: Свойство источника излучения, ухудшающее способность видеть детали изображения.
2.23 техническое регулирование: Правовое регулирование отношений в области установления, применения, использования обязательных и добровольных требований и оценки соответствия.
2.24 технический регламент: Документ, принятый международным договором, федеральным законом или указом президента или постановлением правительства РФ и устанавливает обязательные требования к объектам технического регулирования.
2.25 подтверждение соответствия: Деятельность испытательной лаборатории, направленная на установление соответствия требованиям технических регламентов, национальным стандартов или условиям договоров.
3 Технические характеристики
Требования настоящего стандарта к СОИКП позволят обеспечить разборчивость изображения, однозначное считывание информации в сложных погодных условиях большому числу людей, комфортность пользования, надежность информации при большом внешнем паразитном освещении экрана, необходимую цветопередачу экранов в разных условиях затемнения.
Большинство средств отображения информации коллективного пользования изготавливаются из газоразрядных и светодиодных модулей или модулей на основе обратной оптической проекции. Однако светодиодные экраны обладают заметной зависимостью фотометрических параметров от угла наблюдения. Поэтому указание на зависимость яркостных параметров от угла наблюдения технической документации светодиодных СОИКП является обязательным. Ввиду того, что наименьший размер изображения (кластер) может быть равен 20 мм, оптимальное расстояние наблюдения (не видны стыки модулей и отдельные излучатели) устанавливают расчетом или экспериментально.
4 Технические требования и рекомендации
4.1 Проектное расстояние наблюдения
Проектное расстояние наблюдения должно зависеть от размера экрана и расстояния между излучающими элементами кластера и зазора между составными модулями экрана. Проектное расстояние может быть от нескольких метров до нескольких сотен метров. При этом текстовая, графическая и цветная информация излучения экрана не должны искажаться или исчезать (теряться).
4.2 Угол наблюдения
Изображение на экране должно быть отчетливым и полноцветным при изменении угла наблюдения в пределах от 30° до 80° в вертикальной и горизонтальной плоскостях, перпендикулярных к поверхности экрана и проходящих через его центр (точку пересечения диагоналей). Допустимое изменение яркости излучения экрана , где и — яркости экрана при наблюдении под углом и по нормали (под углом 0°) к плоскости экрана соответственно. Допустимое изменение яркости не должно зависеть от цвета излучения.
4.3 Яркость изображения
Учитывая функциональное назначение экранов коллективного пользования (получение информации одновременно бoльшим числом людей, расстояние наблюдения может быть значительным, значение внешней освещенности — 1-10 лк), яркость излучения от изображения полезной информации должна быть не менее 3000 кд/м . В полноцветных экранах яркость излучения белого цвета равна 10000 кд/м , а яркость каждого основного цвета должна быть не менее 1500 кд/м . Уменьшение яркости изображения в белом и цветном изображении при излучении под углом ±50° от нормали к экрану по сравнению с яркостью излучения по направлению нормали не должно превышать 50%. В целях энергосбережения и комфортного наблюдения экрана в темное время суток или при работе табло в закрытых помещениях рекомендуется устанавливать регулятор яркости, в результате воздействия которого максимальная яркость может быть снижена в 10-100 раз.
Источник