- Вопрос №7. Способы организации виртуальной памяти
- Национальная библиотека им. Н. Э. Баумана Bauman National Library
- Персональные инструменты
- Виртуальная память (Операционные Системы)
- Содержание
- Преимущества виртуальной памяти
- Свойства виртуальной памяти
- Страничная организация памяти
- Преимущества виртуальной памяти со страничной организацией
- Недостатки виртуальной памяти со страничной организацией
- Сегментно-страничная организация виртуальной памяти
- Таблицы страниц
- Менеджер виртуальной памяти
- Закрепленные страницы
Вопрос №7. Способы организации виртуальной памяти
Оперативная память — это важнейший ресурс любой вычислительной системы, поскольку без нее (как, впрочем, и без центрального процессора) невозможно выполнение ни одной программы. Память является разделяемым ресурсом. От выбранных механизмов распределения памяти между выполняющимися процессорами в значительной степени зависит эффективность использования ресурсов системы, ее производительность, а также возможности, которыми могут пользоваться программисты при создании своих программ. Желательно так распределять память, чтобы выполняющаяся задача имела возможность обратиться по любому адресу в пределах адресного пространства той программы, в которой идут вычисления. С другой стороны, поскольку любой процесс имеет потребности в операциях ввода-вывода, и процессор достаточно часто переключается с одной задачи на другую, желательно в оперативной памяти расположить достаточное количество активных задач с тем, чтобы процессор не останавливал вычисления из-за отсутствия очередной команды или операнда. Некоторые ресурсы, которые относятся к неразделяемым, из-за невозможности их совместного использования делают виртуальными. Таким образом, чтобы иметь возможность выполняться, каждый процесс может получить некий виртуальный ресурс. Виртуализация ресурсов делается программным способом средствами операционной системы, а значит, для них тоже нужно иметь ресурс памяти. Поэтому вопросы организации разделения памяти для выполняющихся процессов и потоков являются очень актуальными, т.к. выбранные и реализованные алгоритмы решения этих вопросов в значительной степени определяют и потенциальные возможности системы, и общую ее производительность, и эффективность использования имеющихся ресурсов.
Сегментный способ организации виртуальной памяти.
Первым среди разрывных методов распределения памяти был сегментный. Для этого метода программу необходимо разбивать на части и уже каждой такой части выделять физическую память. Естественным способом разбиения программы на части является разбиение ее на логические элементы – так называемые сегменты. В принципе, каждый программный модуль (или их совокупность, если мы того пожелаем) может быть воспринят как отдельный сегмент, и вся программа тогда будет представлять собой множество сегментов. Каждый сегмент размещается в памяти как до определенной степени самостоятельная единица. Логически обращение к элементам программы в этом случае будет состоять из имени сегмента и смещения относительно начала этого сегмента. Физически имя (или порядковый номер) сегмента будет соответствовать некоторому адресу, с которого этот сегмент начинается при его размещении в памяти, и смещение должно прибавляться к этому базовому адресу. Преобразование имени сегмента в его порядковый номер осуществит система программирования. Для каждого сегмента система программирования указывает его объем. Он должен быть известен операционной системе, чтобы она могла выделять ему необходимый объем памяти. Операционная система будет размещать сегменты в памяти и для каждого сегмента она должна вести учет о местонахождении этого сегмента. Вся информация о текущем размещении сегментов задачи в памяти обычно сводится в таблицу сегментов, чаще такую таблицу называют таблицей дескрипторов сегментов задачи. Каждая задача имеет свою таблицу сегментов. Достаточно часто эти таблицы называют таблицами дескрипторов сегментов, поскольку по своей сути элемент таблицы описывает расположение сегмента. Таким образом, виртуальный адрес для этого способа будет состоять из двух полей – номера сегмента и смещения относительно начала сегмента. Итак, каждый сегмент, размещаемый в памяти, имеет соответствующую информационную структуру, часто называемую дескриптором сегмента. Именно операционная система строит для каждого исполняемого процесса соответствующую таблицу дескрипторов сегментов, и при размещении каждого из сегментов в оперативной или внешней памяти отмечает в дескрипторе текущее местоположение сегмента. Если сегмент задачи в данный момент находится в оперативной памяти, то об этом делается пометка в дескрипторе. Как правило, для этого используется бит присутствия Р (от слова «present»). В этом случае в поле адреса диспетчер памяти записывает адрес физической памяти, с которого сегмент начинается, а в поле длины сегмента (limit) указывается количество адресуемых ячеек памяти. Это поле используется не только для того, чтобы размещать сегменты без наложения друг на друга, но и для того, чтобы контролировать, не обращается ли код исполняющейся задачи за пределы текущего сегмента. В случае превышения длины сегмента вследствие ошибок программирования мы можем говорить о нарушении адресации и с помощью введения специальных аппаратных средств генерировать сигналы прерывания, которые позволят фиксировать (обнаруживать) такого рода ошибки. Если бит присутствия в дескрипторе указывает, что сегмент находится не в оперативной, а во внешней памяти (например, на жестком диске), то названные поля адреса и длины используются для указания адреса сегмента в координатах внешней памяти. Помимо информации о местоположении сегмента, в дескрипторе сегмента, как правило, содержатся данные о его типе (сегмент кода или сегмент данных), правах доступа к этому сегменту (можно или нельзя его модифицировать, предоставлять другой задаче), отметка об обращениях к данному сегменту (информация о том, как часто или как давно этот сегмент используется или не используется, на основании которой можно принять решение о том, чтобы предоставить место, занимаемое текущим сегментом, другому сегменту). При передаче управления следующей задаче операционная система должна занести в соответствующий регистр адрес таблицы дескрипторов сегментов этой задачи. Сама таблица дескрипторов сегментов, в свою очередь, также представляет собой сегмент данных, который обрабатывается диспетчером памяти операционной системы. При таком подходе появляется возможность размещать в оперативной памяти не все сегменты задачи, а только задействованные в данный момент. Благодаря этому, с одной стороны, общий объем виртуального адресного пространства задачи может превосходить объем физической памяти компьютера, на котором эта задача будет выполняться; с другой стороны, даже если потребности в памяти не превосходят имеющуюся физическую память, можно размещать в памяти больше задач, поскольку любой задаче, как правило, все ее сегменты единовременно не нужны. А увеличение коэффициента мультипрограммирования ц, как мы знаем, позволяет увеличить загрузку системы и более эффективно использовать ресурсы вычислительной системы. Очевидно однако, что увеличивать количество задач можно только до определенного предела, т.к. если в памяти не будет хватать места для часто используемых сегментов, то производительность системы резко упадет. Ведь сегмент, находящийся вне оперативной памяти, для участия в вычислениях должен быть перемещен в оперативную память. При этом если в памяти есть свободное пространство, то необходимо всего лишь найти нужный сегмент во внешней памяти и загрузить его в оперативную память. А если свободного места нет, придется принять решение — на место какого из присутствующих сегментов будет загружаться требуемый. Перемещение сегментов из оперативной памяти на жесткий диск и обратно часто называют свопингом сегментов. Итак, если требуемого сегмента в оперативной памяти нет, то возникает прерывание, и управление передается через диспетчер памяти программе загрузки сегмента. Пока происходит поиск сегмента во внешней памяти и загрузка его в оперативную, диспетчер памяти определяет подходящее для сегмента место. Возможно, что свободного места нет, и тогда принимается решение о выгрузке какого-нибудь сегмента и выполняется его перемещение во внешнюю память. Если при этом еще остается время, то процессор передается другой готовой к выполнению задаче. После загрузки необходимого сегмента процессор вновь передается задаче, вызвавшей прерывание из-за отсутствия сегмента. Всякий раз при считывании сегмента в оперативную память в таблице дескрипторов сегментов необходимо установить адрес начала сегмента и признак присутствия сегмента. При поиске свободного места используется одна из вышеперечисленных дисциплин работы диспетчера памяти (применяются правила «первого подходящего» и «самого неподходящего» фрагментов). Если свободного фрагмента памяти достаточного объема нет, но, тем не менее, сумма этих свободных фрагментов превышает требования по памяти для нового сегмента, то в принципе может быть применено «уплотнение памяти», о котором мы уже говорили в подразделе «Разделы с фиксированными границами» раздела «Распределение памяти статическими и динамическими разделами». В идеальном случае размер сегмента должен быть достаточно малым, чтобы его можно было разместить в случайно освобождающихся фрагментах оперативной памяти, но достаточно большим, чтобы содержать логически законченную часть программы с тем, чтобы минимизировать межсегментные обращения. Для решения проблемы замещения (определения того сегмента, который должен быть либо перемещен во внешнюю память, либо просто замещен новым) используются следующие дисциплины:
• правило FIFO (First In First Out — первый пришедший первым и выбывает);
• правило LRU (Least Recently Used — дольше других неиспользуемый);
• правило LFU (Least Frequently Used — реже других используемый);
• случайный (random) выбор сегмента.
Первая и последняя дисциплины являются самыми простыми в реализации, но они не учитывают, насколько часто используется тот или иной сегмент, и, следовательно, диспетчер памяти может выгрузить или расформировать тот сегмент, к которому в самом ближайшем будущем будет обращение. Безусловно, достоверной информация о том, какой из сегментов потребуется в ближайшем будущем, в общем случае быть не может, но вероятность ошибки для этих дисциплин многократно выше, чем у второй и третьей, в которых учитывается информация об использовании сегментов.
В алгоритме FIFO с каждым сегментом связывается очередность его размещения в памяти. Для замещения выбирается сегмент, первым попавший в память. Каждый вновь размещаемый в памяти сегмент добавляется в хвост этой очереди. Алгоритм учитывает только время нахождения сегмента в памяти, но не учитывает фактическое использование сегментов. Например, первые загруженные сегменты программы могут содержать переменные, требующиеся на протяжении всей ее работы. Это приводит к немедленному возвращению к только что замещенному сегменту. Для реализации дисциплин LRU и LFU необходимо, чтобы процессор имел дополнительные аппаратные средства. Минимальные требования – достаточно, чтобы при обращении к дескриптору сегмента для получения физического адреса, с которого сегмент начинает располагаться в памяти, соответствующий бит обращения менял свое значение (скажем, с нулевого, которое устанавливает операционная система, в единичное). Тогда диспетчер памяти может время от времени просматривать таблицы дескрипторов исполняющихся задач и собирать для соответствующей обработки статистическую информацию об обращениях к сегментам. В результате можно составить список, упорядоченный либо по длительности простоя (для дисциплины LRU), либо по частоте использования (для дисциплины LFU).
Важнейшей проблемой, которая возникает при организации мультипрограммного режима, является защита памяти. Для того чтобы выполняющиеся приложения не смогли испортить саму операционную систему и другие вычислительные процессы, необходимо, чтобы доступ к таблицам сегментов с целью их модификации был обеспечен только для кода самой ОС. Для этого код операционной системы должен выполняться в некотором привилегированном режиме, из которого можно осуществлять манипуляции дескрипторами сегментов, тогда как выход за пределы сегмента в обычной прикладной программе должен вызывать прерывание по защите памяти. Каждая прикладная задача должна иметь возможность обращаться только к собственным и к общим сегментам.
При сегментном способе организации виртуальной памяти появляется несколько интересных возможностей. Во-первых, при загрузке программы на исполнение можно размещать ее в памяти не целиком, а «по мере необходимости». Действительно, поскольку в подавляющем большинстве случаев алгоритм, по которому работает код программы, является разветвленным, а не линейным, то в зависимости от исходных данных некоторые части программы, расположенные в самостоятельных сегментах, могут быть не задействованы; значит, их можно и не загружать в оперативную память. Во-вторых, некоторые программные модули могут быть разделяемыми. Поскольку эти программные модуля являются сегментами, относительно легко организовать доступ к таким общим сегментам. Сегмент с разделяемым кодом располагается в памяти в единственном экземпляре, а в нескольких таблицах дескрипторов сегментов исполняющихся задач будут находиться указатели на такие разделяемые сегменты.
Однако у сегментного способа распределения памяти есть и недостатки:
1. Прежде всего, для доступа к искомой ячейке памяти приходится тратить много времени. Мы должны сначала найти и прочитать дескриптор сегмента, а уже потом, используя полученные данные о местонахождении нужного нам сегмента, вычислить конечный физический адрес. Для того чтобы уменьшить эти потери, используется кэширование – те дескрипторы, с которыми мы имеем дело в данный момент, могут быть размещены в сверхоперативной памяти (специальных регистрах, размещаемых в процессоре). Несмотря на то, что рассмотренный способ распределения памяти приводит к существенно меньшей фрагментации памяти, нежели способы с неразрывным распределением, фрагментация остается.
2. Кроме того, много памяти и процессорного времени теряется на размещение и обработку дескрипторных таблиц. Ведь на каждую задачу необходимо иметь свою таблицу дескрипторов сегментов. А при определении физических адресов приходится выполнять операции сложения, что требует дополнительных затрат времени. Поэтому следующим способом разрывного размещения задач в памяти стал способ, при котором все фрагменты задачи считаются равными (одинакового размера), причем длина фрагмента в идеале должна быть кратна степени двойки, чтобы операции сложения можно было заменить операциями конкатенации (слияния). Это – страничный способ организации виртуальной памяти.
Примером использования сегментного способа организации виртуальной памяти является операционная система OS/2 первого поколения, которая была создана для персональных компьютеров на базе процессора i80286. В этой операционной системе в полной мере использованы аппаратные средства микропроцессора, который специально проектировался для поддержки сегментного способа распределения памяти.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
Виртуальная память (Операционные Системы)
Виртуальная память — метод управления памятью, которая реализуется с использованием аппаратного и программного обеспечения компьютера. Она отображает используемые программами виртуальные адреса в физические адреса в памяти компьютера. Основная память представляется в виде непрерывного адресного пространства или набора смежных непрерывных сегментов. Операционная система осуществляет управление виртуальными адресными пространствами и соотнесением оперативной памяти с виртуальной. Программное обеспечение в операционной системе может расширить эти возможности, чтобы обеспечить виртуальное адресное пространство, которое может превысить объем оперативной памяти и таким образом иметь больше памяти, чем есть в компьютере. Виртуальная память позволяет модифицировать ресурсы памяти, сделать объём оперативной памяти намного больше, для того чтобы пользователь, поместив туда как можно больше программ, реально сэкономил время и повысил эффективность своего труда. “Открытие” виртуальной памяти внесло огромную контрибуцию в развитие современных технологий, облегчило работу как профессионального программиста, так и обычного пользователя, обеспечивая процесс более эффективного решения задач на ЭВМ [1] .
Содержание
Преимущества виртуальной памяти
К основным преимуществам виртуальной памяти относят:
- избавление программиста от необходимости управлять общим пространством памяти,
- повышение безопасность использования программ за счет выделения памяти,
- возможность иметь в распоряжении больше памяти, чем это может быть физически доступно на компьютере.
Свойства виртуальной памяти
Виртуальная память делает программирование приложений проще:
- скрывая фрагментацию физической памяти;
- устраняя необходимость в программе для обработки наложений в явном виде;
- когда каждый процесс запускается в своем собственном выделенном адресном пространстве, нет необходимости переместить код программы или получить доступ к памяти с относительной адресацией.
Виртуализация памяти может рассматриваться как обобщение понятия виртуальной памяти.
Почти все реализации виртуальной памяти делят виртуальное адресное пространство на страницы, блоки смежных адресов виртуальной памяти.
При работе машины с виртуальной памятью, используются методы страничной и сегментной организации памяти.
Страничная организация памяти
При страничной организации все ресурсы памяти, как оперативной, так и внешней представляются для пользователя единым целым. Пользователь работает с общим адресным пространством и не задумывается какая память при этом используется: оперативная или внешняя, а эта общая память носит название виртуальной (моделируемой). Виртуальная память разбивается на страницы, которые содержат определённое фиксированное количество ячеек памяти. При этом одна страница математической памяти не может быть больше или меньше других, все страницы должны быть одинаковы по количеству ячеек. Типичные размеры страниц 256, 512, 1024, 2048 Байт и более (числа кратные 256).
Преимущества виртуальной памяти со страничной организацией
- Достаточно большой объём прямо адресуемой памяти. Объем памяти может исчисляться сотнями мегабайт (и даже гигабайтами). Размер виртуальной памяти целиком зависит от объёма накопителя на [жестком] магнитном диске. Созданный SWAP файл размещается на диске и эмулирует оперативную память. При этом пользователь не задумывается о том куда будет помещен “кусок” его программы с которой он только что отработал.
- Программы пользователя могут размещаться в любых свободных страницах [2] .
- Повышает уровень мультипрограммной работы. С организацией виртуальной памяти со страничной организацией пользователь получил реальную возможность загружать в память большее количество программ для того чтобы машина обрабатывала программы сразу (в действительности процессор устанавливает приоритет для каждой программы, находящейся в памяти, и далее в соответствии с приоритетом выделяет определённое количество времени на реализацию каждой программы или команды.
Недостатки виртуальной памяти со страничной организацией
- Основным недостатком виртуальной памяти является то количество времени, которое машина тратит на обращение к внешней памяти. Извлечь необходимую информацию из ячеек оперативной памяти не представляет особого труда и больших затрат времени. Совсем иначе обстоит дело с диском: для того чтобы найти необходимую информацию, нужно сначала “раскрутить” диск, потом найти необходимую дорожку, в дорожке найти сектор, кластер, далее считать побитовую информацию в ОП. Все это требует времени и, порой если при методе случайного удаления страниц*, процессору понадобятся сразу несколько страниц, хранящихся во внешней памяти, большого времени. К сожалению, этот недостаток принадлежит к виду “неисправимых”.
- Наличие сверхоперативной памяти (СОП).
Сегментно-страничная организация виртуальной памяти
Данный метод организации виртуальной памяти направлен на сочетание достоинств страничного и сегментного методов управления памятью. В такой комбинированной системе адресное пространство пользователя разбивается на ряд сегментов по усмотрению программиста. Каждый сегмент в свою очередь разбивается на страницы фиксированного размера, равные странице физической памяти. С точки зрения программиста, логический адрес в этом случае состоит из номера сегмента и смещения в нем. Каждый сегмент представляет собой последовательность адресов от нуля до определённого максимального значения. Отличие сегмента от страницы состоит в том, что длинна сегмента может изменяться в процессе работы. Сегменты, как и любая структура виртуальной памяти, могут размещаться как в оперативной памяти, так и во внешней памяти (магнитных носителях). Виртуальная память с сегментно-страничной организацией функционирует подобно виртуальной памяти со страничной организацией: если требующийся на данный момент сегмент отсутствует в оперативной памяти, то при надобности работы с ним, он предварительно перемещается в ОП. Сегментно-страничная организация памяти требует более сложной аппаратурно-программной организации.
Таблицы страниц
Таблицы страниц используются для перевода виртуальных адресов в физические адреса, используемые аппаратными средствами для обработки инструкций; такое аппаратное обеспечение, который обрабатывает этот конкретный перевод часто называют блоком управления памятью. Каждая запись в таблице страниц держит флажок, указывающий, находится ли соответствующая страница в оперативной памяти или нет. Если она находится в оперативной памяти, запись в таблице страниц будет содержать реальный адрес памяти, где хранится страница [3] . Системы могут иметь как одну таблицу страниц для всей системы, так и отдельные таблицы страниц для каждого приложения и сегмента, деревья таблиц страниц для больших сегментов или некоторой их комбинации. Если есть только одна таблица страниц, различные приложения, работающие одновременно используют различные части одного диапазона виртуальных адресов. При наличии нескольких страниц или сегментов таблицы, есть несколько виртуальных адресных пространств и параллельных приложений с помощью отдельных таблиц страниц для перенаправления на другие реальные адреса.
Менеджер виртуальной памяти
Эта часть операционной системы создает и управляет таблицами страниц. Если оборудование выдает ошибку, Менеджер виртуальной памяти получает доступ к вторичному хранилищу, возвращает страницу, которая имеет виртуальный адрес, который привел к неисправности страницы, обновляет таблицы страниц, чтобы отразить физическое местоположение виртуального адреса и указывает механизм перевода для перезапуска запрос.
Когда вся физическая память уже используется, Менеджер виртуальной памяти должен освободить страницы в основном хранилище для хранения выгруженной страницы. Используется один из множества алгоритмов замещения наименее используемых страниц, чтобы освободить их.
Закрепленные страницы
Операционные системы имеют области памяти, которые никогда не применялись для вторичного хранения. Некоторые из них могут быть закреплены на короткие периоды времени, другие — длительных периодов времени, либо же постоянно.
Источник