- Виды сигналов, модуляция
- Аналоговые, дискретные и цифровые сигналы
- Виды сигналов: аналоговый, цифровой, дискретный
- Сигнал
- Виды сигналов
- Для чего обрабатывается сигнал?
- Создание и формирование
- Динамический диапазон
- Аналоговый сигнал
- Цифровой сигнал
- Применение цифрового сигнала
- Дискретный сигнал
- Сравнение цифрового и аналогового сигналов
Виды сигналов, модуляция
Аналоговая величина – величина, значения которой в заданном интервале изменяются непрерывно. Её конкретное значение зависит только от точности прибора, производящего измерения. Это, например, температура.
Дискретная величина – величина, значения которой изменяются скачкообразно. Например, число студентов в аудитории. Измерительный сигнал – сигнал, содержащий количественную информацию об измеряемой физической величине. Например, напряжение на выходе термоэлектрического преобразователя, измеряющего температуру.
Сигнал данных – форма представления сообщения данных с помощью физической величины, изменения одного или нескольких параметров которой, отображает его изменение.
В микропроцессорной технике сигналами являются электрические величины (ток, напряжение). Представляющий параметр сигнала данных – параметр сигнала данных, изменение которого отображает изменение сообщения данных (амплитуда, частота, фаза, длительность импульса, длительность паузы).
Аналоговый сигнал данных – сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений, т.е. аналоговые сигналы описываются непрерывной (или кусочно-непрерывной) функцией xa(t), причём сама функция и аргумент t могут принимать любые значения на некоторых интервалах
Аналоговый сигнал f (t) называется периодическим, если существует действительное число T, такое, что f (t + T) = f (t) для любых t, при этом T называется периодом сигнала.
Дискретный сигнал данных – отличается от аналоговых тем, что его значения известны лишь в дискретные моменты времени. Дискретные сигналы описываются решётчатыми функциями – последовательностями – xд (nT), где T = const – интервал (период) дискретизации, n = 0, 1, 2, … .
Сама функция xд (nT) может в дискретные моменты принимать произвольные значения на некотором интервале. Эти значения функции называются выборками или отсчётами функции. Другим обозначением решётчатой функции x(nT) является x(n) или xn. Последовательность x(n) может быть конечной или бесконечной, в зависимости от интервала определения функции.
Квантованный сигнал данных – отличается от аналоговых или дискретных разбиением диапазона значений непрерывной или дискретной величины на конечное число интервалов. Простейшим видом квантования является деление целочисленного значения на натуральное число, называемое коэффициентом квантования.
Цифровой сигнал данных – сигнал, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений. Цифровые сигналы описываются квантованными решётчатыми функциями xц(nT). При получении цифрового сигнала из аналогового происходят дискретизация и квантование.
Двоичный цифровой сигнал – сигнал данных, в котором используется способ представления информации о величине параметра в виде многоразрядной комбинации двух величин – нуля и единицы – и называемый обычно двоичным кодом.
В двоичном коде используются только две цифры: 1 и 0. Любое число содержит некоторое количество разрядов, в каждом из которых может стоять только одна из этих цифр. Одна цифра соответствует одному состоянию какого-либо элемента, например, замкнутому контакту, а другая — другому состоянию элемента — разомкнутому контакту.
В двоичной системе единица каждого разряда вдвое больше единицы соседнего, более младшего разряда. Для целых чисел единица первого (самого младшего) разряда равна 2 0 =1, единица второго разряда равна 2•2 0 =2 1 =2, третьего — 2•2 1 =2 2 =4, четвертого 2•2 2 =2 3 =8 и т. д. Например, число 214 в десятичной системе 214 = 2•10 2 +1•10 1 +0•2 5 +4•10 0 , а в двоичной системе 214 = 1•2 7 +1•2 6 +0•2 5 +1•2 4 +0•2 3 +1•2 2 +1•2 1 +0•2 0 и запишется в виде 11010110.
Модуляция – процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала (сообщения).
В наше время двоичные цифровые сигналы в связи с простотой кодирования и обработки используются в цифровых электронных устройствах. Для передачи цифрового сигнала по каналам связи (например, электрическим или радиоканалам) используются различные виды модуляции.
Рассмотрим примеры представляющих параметров сигналов данных на примере различных видов модуляции (см. рис. 1). Кроме рассмотренных видов модуляции, также существуют фазовая (ФМ), время-импульсная (ВИМ), широтно-импульсная (ШИМ) и другие модуляции.
Рис. 1. Различные виды модуляции сигналов – различные представляющие параметры сигналов данных
Для понимания сущности цифрового сигнала рассмотрим следующую классификацию. В цифровой технике выделяют сигналы (рис. 2):
произвольные по величине и непрерывные во времени (аналоговые);
произвольные по величине и дискретные по времени (дискретные);
квантованные по величине и непрерывные по времени (квантованные);
квантованные по величине и дискретные по времени (цифровые).
Рис. 2. Аналоговый, дискретный, квантованный и цифровой сигналы
Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый с термопары, несёт информацию об изменении температуры, сигнал с микрофона – о быстрых изменениях давления в звуковой волне и т.п.
В области цифровой и импульсной техники терминология не является установившейся. Так, дискретный сигнал – это сигнал, значения представляющего параметра которого известны только в определённые моменты времени, а также это сигнал, в отличие от аналогового, представляющий параметр которого может принимать только фиксированные значения (обычно два: логический «ноль» или логическую «единицу»).
Во втором случае было бы правильно называть сигнал квантованным, но промышленные модули называются «модулями ввода дискретных сигналов». Кроме использования для передачи информации различных физических величин, сигналы различаются также представляющими параметрами.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Аналоговые, дискретные и цифровые сигналы
Любая физическая величина по характеру изменения ее значения может быть постоянной (если она имеет только одно фиксированное значение), дискретной (если она может иметь два или более фиксированных значений), или аналоговой (если она может иметь бесчисленное множество значений). Все эти величины могут быть преобразованы в цифровую форму.
Аналоговым называется такой сигнал, который может быть представлен непрерывной линией из множества значений, определенных в каждый момент времени относительно временной оси. Значения аналогового сигнала произвольны в каждый момент времени, поэтому он может быть в принципе представлен как некая непрерывная функция (зависящая от времени как от переменной) либо как кусочно-непрерывная функция времени.
Аналоговым сигналом можно назвать, например, звуковой сигнал, генерируемый обмоткой электромагнитного микрофона или ламповым акустическим усилителем, поскольку такой сигнал непрерывен и его значения (напряжение или ток) сильно отличаются друг от друга в каждый момент времени.
На приведенном ниже рисунке изображен пример подобного рода аналогового сигнала.
Аналоговые величины могу иметь бесконечное множество значений в определенных пределах. Они непрерывны и их значения не могут изменяться скачками.
Пример аналогового сигнала: термопара передает в аналоговом виде значение температуры в программируемый логический контроллер, который управляет с помощью твердотельного реле температурой в электрической печи.
Если некий сигнал принимает произвольные значения лишь в отдельные моменты времени, то такой сигнал называют дискретным. Чаще всего на практике применяются дискретные сигналы, распределенные по равномерной временной решетке, шаг которой называется интервалом дискретизации.
Дискретный сигнал принимает определенные не нулевые значения лишь в моменты дискретизации, то есть он является не непрерывным в отличие от аналогового сигнала. Если из звукового сигнала вырезать небольшие кусочки определенного размера через равные интервалы, такой сигнал можно будет назвать дискретным.
Ниже приведен пример формирования подобного дискретного сигнала с интервалом дискретизации Т. Обратите внимание, что квантуется лишь интервал дискретизации, но не сами значения сигнала.
Дискретные сигналы имеют два и более фиксированных значений (количество их значений всегда выражается целыми числами).
Пример простого дискретного сигнала на два значения: срабатывание путевого выключателя (переключение контактов выключателя в определенном положении механизма). Сигнал с путевого выключателя может быть получен только в двух вариантах — контакт разомкнут (нет действия, нет напряжения) и контакт замкнут (есть действие, есть напряжение).
Когда дискретный сигнал принимает только какие-то фиксированные значения (которые могут быть расположены по сетке с определенным шагом), такие что они могут быть представлены как количество квантовых величин, такой дискретный сигнал называется цифровым. То есть цифровой сигнал — это такой дискретный сигнал, который квантован не только по промежуткам времени, но и по уровню.
Практически дискретные и цифровые сигналы в ряде задач отождествляются, и могут быть легко заданы в форме отсчетов с помощью вычислительного устройства.
На рисунке приведен пример формирования цифрового сигнала на базе аналогового. Обратите внимание, что значения цифрового сигнала не могут принимать промежуточных значений, а только определенные — целое количество вертикальных шагов сетки.
Цифровой сигнал легко записывается и перезаписывается в память вычислительных устройств, просто считывается и копируется без потери точности, тогда как перезапись аналогового сигнала всегда сопряжена с утратой некоторой, пусть и незначительной, части информации.
Обработка цифровых сигналов позволяет получать устройства с очень высокими характеристиками благодаря выполнению вычислительных операций совершенно без потерь качества, либо с пренебрежимо малыми потерями.
В силу этих достоинств, именно цифровые сигналы повсеместно распространены сегодня в системах хранения и обработки данных. Вся современная память — цифровая. Аналоговые носители информации (такие как пленочные кассеты и т.д.) давно ушли в прошлое.
Аналоговый и цифровой приборы для измерения напряжения:
Но даже у цифровых сигналов есть свои недостатки. Их невозможно передать напрямую как есть, ибо передача обычно реализуется посредством непрерывных электромагнитных волн. Поэтому при передаче и приеме цифровых сигналов необходимо прибегать к дополнительной модуляции и аналого-цифровому преобразованию. Меньший динамический диапазон цифровых сигналов (отношение наибольшего значения к наименьшему), обусловленный квантованностью значений по сетке, является еще одним их недостатком.
Существуют и такие области, где аналоговые сигналы незаменимы. Например аналоговый звук никогда не сравнится с цифровым, поэтому ламповые усилители и пластинки до сих пор не выходят из моды, несмотря на обилие цифровых форматов записи звука с самой высокой частотой дискретизации.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Виды сигналов: аналоговый, цифровой, дискретный
Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.
Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.
С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот – каждая деталь завершена и связана с другими за счет специальных линий связи.
Сигнал
Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.
В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.
Описываемый код передачи данных задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.
В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.
Виды сигналов
Существует несколько типов классификации имеющихся сигналов. Рассмотрим, какие бывают виды.
- По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
- По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
- В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.
Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное — немного подумать и вспомнить школьный курс физики.
Для чего обрабатывается сигнал?
Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.
Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.
В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.
Создание и формирование
Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и цифро-аналоговый (ЦАП) преобразователи. Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.
При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.
Динамический диапазон
Диапазон сигнала вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.
Аналоговый сигнал
Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.
Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.
Цифровой сигнал
Цифровой сигнал является особым потоком данных, он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.
Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.
Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.
Применение цифрового сигнала
Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.
В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.
Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.
Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.
Дискретный сигнал
Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения – это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.
Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.
Сравнение цифрового и аналогового сигналов
Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.
Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.
Если говорить коротко, то аналоговый сигнал – способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.
Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.
Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.
Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ – только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.
Источник