Виды подстанций по способу присоединения

Виды трансформаторных подстанций

Целям приема, преобразования и распределения электроэнергии служат трансформаторные подстанции. Конкретно распределительные подстанции служат только для приема и распределения электроэнергии, но без преобразования.

Основным элементом трансформаторной подстанции является силовой трансформатор, а в некоторых случаях автотрансформатор. Подстанция может иметь один или несколько трансформаторов, работающих параллельно.

Силовые трансформаторы обычно масляные, с естественной циркуляцией масла и охлаждающего воздуха. Используются также сухие силовые трансформаторы, которые имеют худшие технико-экономические характеристики, но иногда отдают предпочтение из-за того, что требования к месту и способу установки более легкие по сравнению с масляными.

В целом подстанция состоит из трех частей — распределительного устройства высокого напряжения, силового трансформатора и распределительного устройства низкого напряжения.

Трансформаторная подстанция обычно размещается в здании, на отдельном участке на улице или на опоре. Она всегда устанавливается таким образом, чтобы исключить поражение электрическим током и надежно выполнть свои функции в системе распределения электроэнергии.

В зависимости от того, насколько велико удаление потребителя от источника питания, а также в зависимости от количества потребляемой мощности, в системах электрификации применяются подстанции следующих четырех основных видов:

Узловая распределительная подстанция;

Главная понизительная подстанция;

Подстанция глубокого ввода;

Узловая распределительная подстанция , сокращенно УРП — это такая центральная подстанция, на которую от энергосистемы подается электроэнергия при напряжении от 110 до 220 кВ, и где она распределяется, с частичной трансформацией или вообще без трансформации, по подстанциям глубокого ввода при напряжениях от 35 до 220 кВ, расположенным на территории промышленного предприятия.

Чаще всего узловые распределительные подстанции находятся в ведении организации, осуществляющей электроснабжение, поэтому и размещаются эти подстанции вне предприятия, но вблизи него.

Когда УРП определенно предназначена для питания нескольких подстанций глубокого ввода, на одном предприятии, то рассматривают возможность размещения УРП на территории этого предприятия, и тогда эксплуатация подстанции ложится на плечи персонала предприятия.

Главная понизительная подстанция, сокращенно ГПП , — это подстанция рассчитанная на входное напряжение от 35 до 220 кВ, которая получает питание напрямую от районной энергетической системы, и распределяет электрическую энергию по предприятию, но уже при сильно пониженном напряжении.

ГПП считается одним источником, если питается по одной двухцепной линии, и двумя источниками, если питается по двум одноцепным линиям ( на разных опорах) или по двум кабельным линиям, проложенным по разным трассам. ТЭЦ можно принять за несколько источников питания, если при выходе из строя генератора или при аварии на секции остальные секции ( генераторы) продолжают работать.

Подстанция глубокого ввода, сокращенно ПГВ , — это подстанция, на которую подается напряжение от 35 до 220 кВ, обычно она выполнена с применением упрощенных схем коммутации на стороне первичного напряжения, и получает питание или от энергетической системы напрямую, или от центрального распределительного пункта на самом предприятии.

Предназначение ПГВ — питание группы установок конкретного предприятия или какого-то отдельного объекта на этом предприятии. Схемами с глубоким вводом называют схемы электроснабжения с подстанциями глубокого ввода.

Подстанции глубоких вводов располагаются вблизи наиболее крупных энергоемких производств и корпусов с концентрированной нагрузкой, например: прокатные и электросталеплавильные цехи; сталепроволочные и крепежно-калибровочные блоки метизных заводов; обогатительные фабрики и ряд других производств.

Трансформаторный пункт, сокращенно ТП , — это подстанция с первичным напряжением, равным 35 кВ, 10 кВ или 6 кВ, которая питает напряжением 230 и 400 В непосредственно приемники электроэнергии. Иначе эти подстанции, в электрических сетях промышленных объектов, именуют цеховыми подстанциями.

Трансформаторные пункты часто выполняют сегодня из комплектных трансформаторных подстанций. Число трансформаторов может здесь варьироваться. Когда питаются потребители 3 категории, то, как правило, устанавливается один трансформатор. Когда в районе сконцентрирована значительная мощность нагрузки на 380 / 220 вольт, или когда питаются потребители 2 и 1 категорий, то трансформаторов ставится два.

Способы присоединения трансформаторных подстанций к питающим линиям различны, и подразделяются подстанции по этому признаку на:

Тупиковые трансформаторные подстанции;

Проходные трансформаторные подстанции;

Ответвительные трансформаторные подстанции.

На тупиковую подстанцию питание подается отдельной линией. Для питания тупиковых подстанций используются радиальные схемы питания, либо такая подстанция является последней в магистральной схеме с питанием односторонним.

Для проходных подстанций характерно включение в рассечку (в проход) магистральной линии питания, когда имеют место как вход, так и выход линии. Ответвительные подстанции подключаются через ответвления от питающих линий.

Трансформаторные подстанции бывают сборными или комплектными. Комплектные трансформаторные подстанции, сокращенно КТП , состоят полностью из комплектных узлов. Их изготавливают на заводах, затем доставляют этими узлами на место установки, то есть демонтаж оборудования здесь не требуется. На месте уже блоки, узлы и присоединения монтируют, подключают к питающим сетям.

КТП широко применяются на производственных предприятиях, где их устанавливают внутри или снаружи (КТПН). Сборные подстанции изготавливают на заводах отдельными элементами, затем на месте элементы собирают и монтируют.

Любая трансформаторная подстанция включает в себя три главных блока:

Распределительное устройство низшего напряжения;

Распределительное устройство высшего напряжения.

Зачастую для приема электроэнергии служат распределительные устройства высокого напряжения (РУВН) , которые подают ее к трансформаторам. В некоторых случаях РУВН выполняют функции как приема, так и распределения электрической энергии. Распределительные же устройства низкого напряжения (РУНН) всегда и везде осуществляют только прием и распределение электроэнергии.

Являясь одним из главных составляющих звеньев в системе электрификации любого крупного производственного предприятия, трансформаторная подстанция требует особо тщательного подхода к формированию наиболее рациональным способом схемы распределения электроэнергии.

Место установки подстанции подбирается так, чтобы распределительная и трансформаторная подстанции всех необходимых параметров были бы расположены как можно ближе к центру обеспечиваемых ими групп нагрузок. Если от этой стратегии отступить, то возрастут потери, увеличится расход кабелей, проводов и т. д.

Подстанции классифицируются по месту их базирования на территории того или иного объекта на четыре типа:

Отдельно стоящие подстанции, располагающиеся на каком-то расстоянии от зданий;

Пристроенные подстанции, примыкающие непосредственно к стенам снаружи здания;

Встроенные подстанции, располагающиеся в специализированных отдельных помещениях внутри строения или примыкающие изнутри сооружения к его стенам;

Внутрицеховые подстанции, находящиеся внутри цехов, то есть электрооборудование размещается непосредственно в рабочем помещении, либо в закрытом помещении с выкаткой оборудования подстанции в цеха.

Промышленные сети с напряжением от 6 кВ до 10 кВ, с целью их сближения с электроприемниками, рекомендуется оснащать внутренними, интегрированными в здания или пристроенными к ним подстанциями.

Для очень крупных многопролетных цехов значительной ширины наиболее подходящими являются внутрицеховые трансформаторные подстанции, к примеру для производств, связанных с деревообработкой, с металлообработкой, и для иных производств, для установки в котельных, в насосных, в компрессорных станциях.

Монтаж таких подстанций осуществляют чаще всего возле колонн или возле закрытых помещений внутри цеха, за пределами зоны работы кранов. Эти подстанции подходят только для зданий второй и первой степени по огнестойкости, с производствами категорий Д и Г в соответствии с противопожарными нормами.

Количество силовых масляных трансформаторов, установленных во внутрицеховых подстанциях не должно превышать трех штук. Это ограничение не касается сухих трансформаторов или трансформаторов заполненных негорючей жидкостью. Трансформаторы внутрицеховых подстанций можно выкатывать из цеха, тогда естественной вентиляции будет достаточно.

Если применение внутрицеховых подстанций недопустимо, например из-за обычного загрязнения воздуха рабочей зоны, или по причине нахождения потребителей за пределами цеха, тогда лучше подойдут пристроенные трансформаторные подстанции.

Встроенные и пристроенные ТП как правило располагают вдоль длинной стороны цеха, ближней к источнику питания, либо в небольших цехах — в чередующемся порядке вдоль двух стен цеха.

Что касается отдельно стоящих подстанций, то они сооружаются на территории предприятия, но на заданном расстоянии от цехов, поскольку предназначены для электрификации одного или нескольких цехов. Такие ТП применяют, как правило, в случае невозможности установки пристроенных или внутренних подстанций по условиям рабочего процесса или по архитектурным соображениям.

Отдельно стоящие ТП подходят для предприятий малой мощности, где они питают несколько маломощных цехов, разбросанных по всему предприятию.

Иногда удобно разместить щит низкого напряжения в цеху, а сам трансформатор — снаружи здания. Так цеховая подстанция занимает по площади меньше места в цеху, чем встроенная.

Относительно компоновки подстанции важно помнить, что она обязательно соотносится с генеральным планом объекта электроснабжения. Нужно непременно учесть СНиПы и размеры элементов зданий. Главные критерии при этом следующие:

Безопасность обслуживания оборудования в штатном режиме работы установки;

Удобство наблюдения за индикаторами положения разъединителей и выключателей, а также за уровнем трансформаторного масла в соответствующих аппаратах;

Надлежащая степень обнаружения повреждений в случае нарушения штатных условий функционирования установки при дуговом коротком замыкании;

Читайте также:  Способы нетрадиционного лечения детей

Безопасность осмотра и ремонта как любого аппарата так и любой цепи при снятом напряжении, без помех для соседних цепей, пребывающих под напряжением;

Достаточная механическая стойкость опорных конструкций оборудования;

Удобство транспортировки оборудования;

По возможности максимальная экономия площади.

Трансформаторная подстанция относится к категории специального технического оборудования, в отношении которого необходимо проводить регулярные проверки и работы по техническому обслуживанию (смотрите — Эксплуатация трансформаторных подстанций).

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Виды подстанций по способу присоединения

Подстанцией называется электроустановка, служащая для преобразования и распределения электроэнергии и состоящая из трансформаторов, распределительных устройств управления, защиты и измерения.

После изучения модуля №7 вы будете знать:

-схемы электрических соединений и конструкции подстанций;

-выбирать необходимый для данного объекта электроснабжения тип и конструкцию подстанции;

-размещать на территории подстанции необходимое оборудование.

В настоящее время основная часть сельскохозяйственных потребителей получает питание от объединенных энергосистем по сетям, которые предназначены также для питания промышленных предприятий, городов и электрифицированного транспорта. Непосредственными источниками питания сельских потребителей в этом случае являются подстанции, которые делятся на районные трансформаторные подстанции (РТП) и потребительские (ТП).

Назначение РТП – преобразовывать электроэнергию с напряжения 35-110 кВ на напряжение 10-35 кВ с целью более экономичного ее распределения в районе и передачи по воздушным линиям к потребительским ТП 6-35/0,4 кВ.

Назначение ТП – преобразовывать электроэнергию с напряжения 10-35 кВ на 0,4 кВ с целью распределения ее на территории населенного пункта или другого потребителя и передачи воздушными или кабельными линиями непосредственным потребителям: двигателям, нагревательным и осветительным приборам и т. п.

По способу присоединения к линиям все понижающие подстанции делятся на:

— тупиковые или ответвительные, присоединяемые к концу линии (рис. 7.1, а – тупиковые); или присоединяемые глухой отпайкой к одной или двум проходящим линиям (рис. 7.1, б – ответвительные);

— проходные, которые включаются в рассечку одной или двух линий (рис. 7.1, в);

— узловые или опорные, имеющие не менее двух питающих и несколько отходящих линий (рис. 7.1, г).

Если через шины проходных и узловых подстанций имеются перетоки энергии в оба направления, то такие подстанции называются транзитными .

Главной схемой электрических соединений подстанции называется совокупность основного оборудования: трансформаторов, сборных шин, коммутационной и другой аппаратуры первичной цепи – со всеми выполненными между ними соединениями и линиями. Ее изображают на чертеже в однолинейном исполнении с элементами, находящимися, как правило, в отключенном состоянии. Все элементы изображают условными символами в соответствии с единой системой конструкторской документации ЕСКД и ГОСТом.

Любая понижающая подстанция (рис. 7.1) содержит следующие основные части: распределительное устройство высшего напряжения РУВН, один или два (иногда более двух) трансформатора, распределительное устройство низкого напряжения РУНН.

Кроме этих основных частей, на подстанции имеются: система собственных нужд, устройства управления, сигнализации и блокировки, заземляющее устройство, вспомогательное оборудование и сооружения.

Распределительным устройством (РУ) трансформаторной подстанции называется совокупность электроустановок, предназначенная для приема и распределения электрической энергии, состоящая из несущих конструкций, шин, аппаратов для коммутации, управления, измерений, защиты и автоматики, а также вспомогательных элементов.

РУ делятся на открытые (ОРУ), размещенные на открытом воздухе, и закрытые (ЗРУ), расположенные в зданиях.

Рис. 7.1. Типы понижающих подстанций

а – тупиковая; б – ответвительная; в – проходная; г – узловая или опорная

Закрытые РУ применяют, при напряжении до 20 кВ, а в случае загрязненной атмосферы, ограниченной площади или тяжелых климатических условий Крайнего Севера их применяют и при напряжении 35-110 кВ.

В настоящее время РУ чаще всего выполняются на основе унифицированных, поставляемых комплектно блоков. Такие РУ называются комплектными распределительными устройствами (КРУ).

КРУ – это распределительное устройство, состоящее из закрытых шкафов со встроенными в них аппаратами, измерительными и защитными приборами и вспомогательными устройствами. Шкафы КРУ изготовляются на заводах и с полностью собранным и готовым к работе оборудованием поступают на место монтажа, где их устанавливают, соединяют сборные шины на стыках шкафов, подводят силовые и контрольные кабели. Применение КРУ позволяет ускорить монтаж распределительного устройства. КРУ безопасно в обслуживании, так как все части, находящиеся под напряжением, закрыты металлическим кожухом. В качестве изоляции между токоведущими частями в КРУ могут быть использованы воздух, масло, твердая изоляция, инертные газы. КРУ с масляной и газовой изоляцией могут изготовляться на напряжения до 500 кВ. В КРУ могут применяться обычные аппараты или специально предназначенные для них, могут сочетаться и те и другие. Например, для КРУ 6-10 кВ применяются выключатели обычной конструкции, а вместо разъединителей – втычные конта кты.

Нашей промышленностью выпускаются КРУ 3-35 кВ с воздушной изоляцией и 110-220 кВ с элегазовой.

Шкафы КРУ перегородками делятся на отсеки: выключателя на выдвижной тележке; сборных шин; линейного ввода; релейного шкафа. Конструкция шкафов КРУ предусматривает возможность установки тележек с выключателем, трансформатором напряжения или с разъединяющими контактами с перемычкой в рабочем, контрольном положении и выкатывание из шкафа для ревизии и ремонта. Шкафы КРУ имеют блокировочные устройства, не позволяющие вкатывать или выкатывать тележку при включенном положении выключателя, а также включать заземляющий разъединитель при рабочем положении тележки и вкатывать тележку при включенном заземляющем разъединителе.

Изготовители КРУ в каталогах приводят сетку типовых схем шкафов, ориентируясь на которую при проектировании подбирают типы шкафов и комплектуют распределительное устройство конкретной электроустановки.

КРУ изготавливаются для установки внутри закрытого РУ. Для открытой установки вне помещения предназначены специальные КРУ наружной установки ( КРУН). Шкафы КРУН применяются на комплектных трансформаторных подстанциях ( КТП) и в открытых РУ.

КТП изготовляются на заводах и крупноблочными узлами доставляются на место монтажа. На подстанциях применяются КТП наружной установки с высшим напряжением 35 и 110 кВ.

Самарским заводом “Электрощит” (www.electroshield.ru) выпускаются комплектные трансформаторные подстанции из блоков заводского изготовления КТПБ(М) [35]. На рис. 7.2 представлена комплектная подстанция 35/10 кВ с двумя трансформаторами, выполненная по типовой схеме схема мостика с выключателями на стороне 35 кВ. На стороне 10 кВ применена схема с одной секционированной системой шин.

Главными достоинствами КТП и КРУ являются: сокращение объемов и сроков проектирования, строительно-монтажных работ, экономия трудовых затрат, увеличение надежности работы и безопасности обслуживания вследствие высокого качества монтажа и конструкции, удобство и быстрота расширения или реконструкции. В связи с применением в сельском хозяйстве КТП далее все вопросы будут рассматриваться применительно к этому типу подстанций.

Рис. 7.2. Комплектная трансформаторная подстанция 35/10 кВ с двумя трансформаторами:

1 – блок ввода линии и трансформатор напряжения; 2 – блок выключателя; 3 – блок силового трансформатора; 4 – установка осветительная; 5 – КРУН 10 кВ; 6 – шкаф высокочастотной связи; 7 – жесткая ошиновка ОРУ 35 кВ

Сельские трансформаторные подстанции, как правило, располагают в центре нагрузок, а с целью большей надежности электроснабжения потребителей их сооружают двухтрансформаторными (см. раздел 10) и с резервным питанием от соседней подстанции. В настоящее время часть РТП и подавляющее число ТП являются однотрансформаторными.

Тупиковые и ответвительные однотрансформаторные подстанции на стороне 35-110 кВ выполняются по схеме блока трансформатор-линия без коммутационной аппаратуры со стороны высокого напряжения или с одним разъединителем, если защита линии со стороны питающего конца имеет достаточную чувствительность к повреждениям в трансформаторе. При кабельном вводе в трансформатор разъединители не устанавливаются.

При недостаточной чувствительности защиты питающей линии к повреждениям в трансформаторе на тупиковых и ответвительных подстанциях на напряжении 35-110 кВ ранее широко применялись схемы с отделителями и короткозамыкателями с высокой стороны трансформатора, такие схемы имеются в эксплуатации, но к применению на вновь проектируемых подстанциях не рекомендуются [14]. Работа этой схемы рассмотрена в главе 6 (см. рис. 6.7). На вновь проектируемых подстанциях вместо отделителей и короткозамыкателей устанавливаются силовые выключатели.

При необходимости секционирования линий, при мощности трансформаторов до 63 MB·А включительно и напряжении 35-110 кВ применяются проходные подстанции, главные схемы которых выполнены по схеме мостика.

Схема такой подстанции приведена на рисунке 7.3. Ремонтная перемычка с разъединителями QS9, QS10 нормально отключена одним из этих разъединителей, например QS9.

Выключатель Q3 в мостике включен, что обеспечивает транзит мощности по линиям W1 и W2. Если необходимо исключить параллельную работу линий W1, W2 с точки зрения ограничения токов КЗ, выключатель Q3 отключен. При аварии в трансформаторе Т1 отключаются выключатель со стороны 6 (10) кВ и выключатели Q1 и Q3. После отключения разъединителя QS3 включаются Q1 и Q3, и транзит восстанавливается. Для ремонта Q1 включают ремонтную перемычку (разъединитель QS9), отключают Q1 и разъединители QS1 и QS2. Если в этом режиме произойдет авария в Т2, то отключаются Q2 и Q3 и оба трансформатора остаются без питания. Необходимо отключить QS6 и включить Q3 и Q2, тогда Т1 подключается к обеим линиям. Этот недостаток можно устранить, если мостик и ремонтную перемычку поменять местами. В этом случае при повреждении в трансформаторе отключается один выключатель на стороне ВН трансформатора, выключатель в мостике остается включенным, значит, транзит мощности по W1, W2 сохраняется.

Читайте также:  Периферийный способ отвалообразования это

Потребительские ТП 10/0,4 кВ по конструкции могут быть комплектные наружной установки и закрытого типа (кирпичные, блочные, панельные).

В системах электроснабжения сельского хозяйства применяются следующие типы комплектных ТП 10/0,4 кВ:

Рис. 7.3. Схема мостика

1 – мачтовые трансформаторные подстанции ( МТП) одностолбовые мощностью 4 и 10 кВ·А (однофазные), 25-160 кВ·А (трехфазные);

2 – МТП двухстолбовые мощностью 25-250 кВ·А;

3 – КТП шкафного типа мощностью 25-250 кВ·А;

4 – КТП киоскового типа с трансформаторами мощностью 100-630 кВ·А;

5 – закрытые трансформаторные подстанции (ЗТП) с трансформаторами мощностью 160-630 кВ·А.

Первые четыре типа ТП выполняются тупиковыми однотрансформаторными практически с единой схемой электрических соединений. Силовой трансформатор типа ТМ присоединяется к ВЛ 10 кВ через разъединитель типа РЛНД-1-10 и предохранитель типа ПКТ, а к шинам 0,4 кВ через рубильник. На отходящих линиях устанавливаются автоматические воздушные выключатели и защитные приставки, обеспечивающие максимальную токовую защиту и защиту от однофазных КЗ, или плавкие предохранители.

Для защиты электрооборудования от атмосферных перенапряжений устанавливаются вентильные разрядники типа РВО-10 напряжением 10 кВ и РВН-0,5 напряжением 0,4 кВ или нелинейные ограничители перенапряжений – в новых разработках.

В цепи уличного освещения для автоматического управления устанавливается фотореле.

Учет расхода электроэнергии на вводе 0,4 кВ осуществляется трехфазным счетчиком типа СА4У-Н672М, включенным через трансформаторы тока типа Т-0,66.

Мачтовые (столбовые) ТП 10/0,4 кВ предназначены для электроснабжения потребителей сельского хозяйства небольшой мощности. Их достоинства следующие: простота конструкции, удобство эксплуатации, надежная работа оборудования, более низкая стоимость по сравнению с другими конструкциями ТП 10/0,4 кВ. Конструктивно МТП выполнены на концевой П-образной опоре или на железобетонной стойке ВЛ 10 кВ.

Оборудование КТП шкафного типа устанавливается единым блоком на стойках на высоте 1,8 м от земли.

Для повышения удобства и безопасности обслуживания, снижения эксплуатационных издержек разработаны киосковые однотрансформаторные тупиковые КТП 10/0,4 кВ мощностью 100-250 кВ·А. Оборудование размещается в металлическом корпусе, состоящем из отсеков низкого (0,4 кВ), высокого (10 кВ) напряжения, находящихся по разные стороны КТП. КТП устанавливается на четырех железобетонных стойках на высоте 0,7 м от земли.

ЗТП 10/0,4 кВ применяют для электроснабжения наиболее ответственных и крупных потребителей сельского хозяйства. Чаще всего на них устанавливается два трансформатора, и они имеют развитые РУ 10 и 0,4 кВ.

КТП 10/0,4 кВ представляют собой однотрансформаторные подстанции наружной установки предназначены для применения в районах с умеренным климатом (от -45° С до +40° С).

Комплектные трансформаторные подстанции выпускаются:

— по способу подключения к ЛЭП: тупиковыми ( КТПТ) или проходными ( КТПП);

— по виду ввода: с воздушным вводом или с кабельным вводом.

Рассмотрим схемы комплектных трансформаторных подстанции типа КТП и КТПР мощностью 25-250 кВ·А напряжением 10(6) кВ, выпускаемые Минским элетротехническим заводом (http.//www.metz.by).

Общий вид КТП и КТПР мощностью 25-250 кВ·А приведен на рисунке 7.4.

КТП подключается к сети через разъединитель, который поставляется комплектно. На отходящих фидерах установлены стационарные автоматы (в КТП) и рубильники с дугогасящими камерами (в КТПР).

Принципиальная электрическая схема КТП приведена на рисунке 7.5.

Подстанция получает питание по линии напряжением 10(6) кВ. Напряжение к силовому трансформатору Т подводится через разъединитель QS1 и предохранители FU1 — FU3 защищающие силовой трансформатор от многофазных КЗ, от выводов его вторичной обмотки через рубильник QS2 и трансформаторы тока ТА1 — ТА3 – к шинам напряжением 0,4 кВ, далее через автоматические выключатели QF1 — QF4 к линиям №1 — №4. На линиях №1 — №3 напряжением 0,38 кВ установлены максимальные реле тока КА1 — КА3 для защиты отходящих линий от однофазных коротких замыканий. К приборам уличного освещения питание поступает через предохранители FU4 — FU6 и магнитный пускатель КМ1. Автоматическое включение и отключение линии уличного освещения осуществляется посредством фотореле КV1 с фоторезистором BL1, ручное – переключателем SA1.

Защита от многофазных КЗ и перегрузки отходящих линий осуществляется автоматическими выключателями QF1 — QF4.

Учет расхода активной электроэнергии выполняется счетчиком PI1, токовые обмотки которого питаются от трансформаторов тока ТА1 — ТА3, для поддержания нормальной температуры воздуха вблизи счетчика в зимних условиях служат резисторы R1 — R3, включаемые переключателем.

Рис. 7.4. Общий вид КТП и КТПР мощностью 25-250 кВ·А
1 – вентильный разрядник РВО (или ограничитель перенапряжений);
2 – шкаф РУВН; 3 – шкаф РУНН; 4 – трансформатор

Контроль наличия напряжения и освещение шкафа РУНН осуществляется лампой, включаемой автоматическим выключателем SF2. Шкаф РУНН освещают лампой EL1, которую включают автоматическим выключателем SF1.

Технические характеристики КТП и КТПР мощностью 25-250 кВ·А

Тип На стороне ВН На стороне НН
Напряжение, кВ Номинальный ток, A
Плавкой вставки предохранителя Линии № 1 Линии № 2 Линии № 3 Линии № 4 Линии наружного освещения
КТП-25
КТПР-25
10 5 31,5 31,5 16
КТП-40
КТПР-40
10 0
8
63
КТП-63
КТПР-63
10 6
10
40 40
КТП-100
КТПР-100
10 0
16
100 80
КТП-160
КТПР-160
10 20 80 160 100
КТП-250 10 31,5 250
КТПР-250 10 31,5 250

Для защиты от перенапряжения на линиях напряжением 10 кВ устанавливают разрядники FV1-FV3, а на линиях напряжением 0,38 кВ – разрядники FV4-FV6. Вместо вентильных разрядников на подстанциях выпускаемых в настоящее время могут быть установлены наиболее совершенные аппараты – нелинейные ограничители перенапряжений

Принципиальная электрическая схема КТПР приведена на рисунке 7.6.

Комплектные трансформаторные подстанции киоскового типа применяются в основном для электроснабжения промышленных объектов и отдельных населенных пунктов. КТП киоскового типа выполняются одно – или двухтранформаторными, наружной установки.

Параметры комплектных трансформаторных подстанций киоскового типа мощностью 63 — 400 кВ·А приведены в таблице 7.2.

Общий вид КТППАС мощностью 63 — 400 кВ·А приведен на рисунке 7.4. Где 1, 2 – башни ввода ВН № 2 и № 1 соответственно (только для КТП с воздушным вводом); 3, 4 – шкафы ВН №1 и № 2 соответственно; 5 – шкаф трансформаторного ввода; 6 – шкаф трансформатора и РУНН; 7 – отсек трансформатора; 8 – шкаф выводов НН (только для КТП с воздушными выводами НН); 9 – отсек РУНН; 10 – кабели 0,4 кВ.

Конструктивно КТПТАС отличается от КТППАС отсутствием одной башни ввода ВН и более простой принципиальной схемой, поэтому рассмотрим принципиальную схему КТППАС (рис. 7.5).

Высоковольтный ввод в КТП киоскового типа 10(6) кВ выполняется кабельным или воздушным. Выводы отходящих линий 0,4 кВ кабельные и воздушные или только кабельные.

На отходящих фидерах 0,4 кВ устанавливаются автоматические выключатели стационарного или выдвижного исполнения.

Конструктивно КТП выполняются в шкафном исполнении, основные составные части соединяются болтовыми соединениями. Конструкция КТП предусматривает ее установку на фундаменте, а также на бетонных блоках высотой 600 мм.

КТП с воздушным вводом подключается к ЛЭП 10(6) кВ через разъединители QS1 и QS2 (рис. 7.5) которые поставляются комплектно с подстанцией и устанавливаются на ближайших опорах. Патроны высоковольтных предохранителей установлены внутри шкафа ВН КТП.

Технические параметры комплектных трансформаторных подстанций киоскового типа мощностью 63 — 400 кВ·А

Наименование параметра Значение параметра
Тип трансформатора ТМГ
Номинальная мощность трансформатора, кВА 63 100 160 250 400
Схема и группа соединения обмоток трансформатора Y/Y н -0 Y/Y н -0
Y/Z н -11
Номинальный ток предохранителя на стороне ВН, А 10,0 16,0 20,0 31,5 50,0
Номинальное напряжение на стороне НН, кВ 0,4
Номинальные токи отходящих линий, А № 1 25 40 80 100
№ 2 25 40 80 100 160
№ 3 63 100 160 200
№ 4 40 80 100 1600 200
№ 5 40
№ 6 63
Уличное освещение 16; 25

КТП обеспечивает учет активной электрической энергии, счетчиком PI1, подключенному через трансформаторы тока ТА1 — ТА3. Заводом изготовителем предусматривается возможность по требованию заказчика установки счетчика реактивной энергии, а также счетчика любой модификации (совмещенного, электронного и т.д.)

Условное обозначение КТП киоскового типа:

Для создания нормальных условий эксплуатации КТП схемой предусмотрено внутреннее освещение лампами EL1 — EL6 и обогрев аппаратуры нагревательными элементами ЕК1 — ЕК4. Лампы освещения располагаются в шкафах подстанции и включаются переключателями SA1 — SA5, их питание осуществляется от понижающего трансформатора Т2 с напряжением во вторичной цепи 42 В. Цепи освещения подстанции защищены от КЗ предохранителем FU7, также в цепи предусмотрено гнездо для подключения переносного освещения. Питание на Т2 подается через автоматический выключатель SF1 Включение электронагревателей шкафов может производиться вручную переключателем SA9 или автоматически при помощи теплового датчика BK1 и промежуточного реле KL2. Подогрев счетчика электрической энергии PI1 в холодное время года осуществляется резисторами R1 — R3 вручную переключателем SA7.

В КТП имеется фидер уличного освещения, включаемый магнитным пускателем КМ1 и защищаемый предохранителями FU4 — FU6, который оснащен устройством ручного и автоматического включения и отключения при помощи переключателя SA8. В автоматическом режиме катушка магнитного пускателя получает питание через фотореле, которое состоит из фотосопротивления BL1 и реле напряжения KV1.

Схема КТП предусматривает контроль тока амперметром РА1 установленным в цепи счетчика электрической энергии и напряжения на стороне 0,4 кВ. С помощью вольтметра PV1 подключенного через переключатель SA6, можно измерить линейные напряжения на шинах 0,4 кВ.

В КТП предусматриваются следующие виды защит:

— от атмосферных перенапряжений (при наличии воздушных линий) вентильными разрядниками FV1 — FV3 на стороне ВН и FV4 — FV6 на стороне НН;

— от междуфазных коротких замыканий на шинах ВН трансформатора Т1 предохранителями FU1 — FU3;

— от перегрузки силового трансформатора с помощью теплового реле КК1, включенного через трансформаторы тока ТА4, ТА5. При перегрузке трансформатора замыкающий контакт теплового реле КК1 замыкает цепь питания катушки промежуточного реле KL2, замыкающие контакты KL2 замыкают цепи питания независимых расцепителей автоматических выключателей QF1 — QF6, SF2, которые отключают автоматические выключатели QF1-QF6 отходящих линий и автоматический выключатель SF2 цепи обогрева шкафов;

— от перегрузки и коротких замыканий на отходящих линиях 0,4 кВ автоматическими выключателями QF1-QF6, имеющими тепловые, электромагнитные;

— от коротких замыканий цепей обогрева, цепей освещения КТП автоматическими выключателями SF1, SF2;

— КТП имеет полный комплект электрических и механических блокировок, обеспечивающих безопасную работу обслуживающего персонала.

Для предотвращения отключения рубильника QS4 под нагрузкой предусмотрена блокировка, которая работает следующим образом. При открывании панели закрывающей РУ 0,38 кВ размыкающие контакты выключателя блокировки SQ1 замыкаются и реле KL1 срабатывает, отключая автоматические включатели QF1-QF6 линий № 1 — 6 и SF2 цепей обогрева оборудования КТП. Одновременно замыкающим контактом SQ1 размыкается цепь обмотки магнитного пускателя КМ и отключается линия уличного освещения (положение контактов выключателя SQ1 на рис.7.7 показано при открытой панели, закрывающей РУ 0,38 кВ).

Предусмотрены также механические блокировки, не допускающие открывания двери вводного устройства высшего напряжения при отключенных заземляющих ножах разъединителя, а также отключения заземляющих ножей разъединителя при открытой двери вводного устройства 10 кВ. Блок-замок двери вводного устройства 10 кВ и блок-замок привода заземляющих ножей имеют одинаковый секрет. К ним имеется один ключ. Во включенном положении разъединителя ключ с привода заземляющих ножей снять невозможно. После отключения главных и включения заземляющих ножей разъединителя ключ свободно снимается с привода заземляющих ножей и им можно открыть дверь устройства ввода 10 кВ.

В отличие от схемы, приведенной на рис. 7.8, подстанции киокового типа могут иметь следующие особенности:

1. В КТПАС с кабельным вводом отсутствуют QS1, QS2, FV1-FV3, SQ3, SQ4.

2. В КТПАС с кабельными выводами отсутствуют КА1-КА4, FV4-FV6.

3. Линии №3 и №4 – только с кабельными выводами.

4. Цепи с QS2, YAT, SQ3, SQ4 выполняются только для КТПАС с воздушным вводом, с выключателями нагрузки имеющими электромагнит отключения.

5. В КТПАС мощностью 63-250 кВ·А отсутствует светильник EL1.

6. Штатная защита от перегрузки устанавливается только в КПППАС 400 кВ·А (в КТПАС остальных мощностей по заказу).

Рис. 7.5. Схема принципиальная электрическая КТП

Рис. 7.6. Схема принципиальная электрическая КТПР

Рис. 7.7. КТП 63-400 кВ·А проходного типа с воздушным (кабельным) вводом ВН и воздушно-кабельными выводами НН

Рис. 7.8. Схема принципиальная электрическая КТППАС мощностью 63-400 кВ·А

Мачтовые трансформаторные подстанции типа МТП представляют собой однотрансформаторные подстанции наружной установки.

МТП мощностью до 25 кВ·А монтируют на А-образной деревянной опоре. МТП мощностью 25-100 кВ·А монтируют на П-образной деревянной опоре или одной железобетонной. МТП мощностью 160-250 кВ·А – на АП-образной деревянной или П-образной железобетонной опоре. Подстанции в большинстве случаев выполняют тупиковыми.

На рис. 7.9 показан общий вид МТП 10/0,4 кВ мощностью 25-100 кВ·А. Все оборудование размещено на железобетонной опоре.

Трансформатор 3 установлен на площадке, закрепленной на опоре, изоляторы ВН трансформатора должны находиться на высоте не менее 4,5 м. МТП подключается к ЛЭП посредством разъединителя, который устанавливается на ближайшей опоре. Напряжение к трансформатору от разъединителя подается через предохранители 2. Для защиты от перенапряжений устанавливаются вентильные разрядники 1 (или ограничители перенапряжения)

РУНН 0,4 кВ 4 представляет собой металлический шкаф с установленной внутри аппаратурой. Ввод в шкаф от трансформатора и выводы к линиям 380/220 В выполнены в трубах.

МТП мощностью более 100 кВ·А выполняются с площадкой для обслуживания силового трансформатора. Для подъема на площадку обслуживания служит складная металлическая лестница, которая (в сложенном виде) так же, как дверцы шкафа и привод разъединителя, запирается на замок.

Заводы изготовители по желанию заказчика могут изменять количество отходящих линий НН и их токи, также МТП по желанию заказчика могут быть укомплектованы любым типом силового трансформатора.

Принципиальная электрическая схема МТП 160, 250 кВ·А аналогична схеме КТПР (рис. 7.6).

Рис. 7.9. МТП 10/0,4 кВ мощностью 25-100 кВ·А

Технические характеристики МТП 10/0,4 кВ мощностью 25-100 кВ·А приведены в таблице 7.3.

Технические характеристики МТП 10/0,4 кВ мощностью 25-100 кВ·А

Параметр Значение параметра
Номинальная мощность трансформатора, кВ·А 25 40 63 100
Номинальное напряжение на стороне ВН, кВ 10 (6)
Номинальное напряжение на стороне НН, кВ 0,4
Номинальный ток отходящих линий, А № 1 31,5 40
№ 2 31,5 63 100
№ 3 40 80
Уличного освещения 16
Схема и группа соединения обмоток трансформатора Y/Yн-0

Технические характеристики МТП 10/0,4 кВ мощностью 160, 250 кВ·А

Параметр Значение параметра
Тип трансформатора ТМГ
Схема и группа соединения обмоток Y/Yн-0 или Δ/Yн-11
Номинальная мощность трансформатора, кВ·А 160 250
Номинальное напряжение на стороне ВН, кВ 6 10 6 10
Номинальное напряжение на стороне НН, кВ 0,4
Номинальный ток трансформатора на стороне ВН, А 15,4 9,25 24,8 14,45
Номинальный ток плавкой вставки предохранителя ВН, А 31,5 20 40 31,5
Номинальный ток трансформатора на стороне НН, А 231,0 361,0
Номинальный ток отходящих линий, А № 1 400
№ 2 200
№ 3 160
Уличного освещения 16 (25)

Рис. 7.10. Принципиальная электрическая схема МТП 10/0,4 кВ мощностью 25-100 кВ·А

Рис. 7.11. Общий вид МТП 10/0,4 кВ 90мощностью 160, 250 кВ·А

При расположении населенных пунктов или других объектов вблизи ВЛ 35 кВ и при значительном удалении их от подстанций 35/10 кВ электроснабжение потребителей целесообразно осуществлять от подстанций 35/0,4 кВ. В этом случае нет необходимости сооружать ВЛ 10 кВ, что компенсирует разницу в стоимости между ТП 35/0,4 кВ и ТП 10/0,4 кВ. Схемы электрических соединений подстанций 35/0,4 кВ и 10/0,4 кВ отличаются одна от другой только номинальным напряжением аппаратов, устанавливаемых на стороне высшего напряжения; на стороне 0,4 кВ аппаратура одна и та же. Электрическая схема МТП 35/0,4 кВ приведена на рис. 7.12.

Рис. 7.12. Принципиальная электрическая схема МТП 100 кВ·А напряжением 35/0,4 кВ

1. По каким признакам осуществляется классификация подстанций?

2. Нарисуйте схему присоединения тупиковой и проходной подстанции.

3. Для чего предназначены распределительные пункты (РП) и чем они отличаются от ТП?

4. В чем состоит преимущество применения комплектных трансформаторных подстанций?

5.Назовите основное отличие КРУН от КРУ

6. Из каких основных частей состоит комплектная подстанция?

7.Через какие аппараты подводится высокое напряжение к подстанции?

8. Какое оборудование установлено в шкафу распределительного устройства низкого напряжения?

9. Как устанавливается и крепится комплектная трансформаторная подстанция?

10. Как осуществляется защита от перегрузок на подстанциях?

Источник

Читайте также:  Лужение медной проволоки горячим способом
Оцените статью
Разные способы