Видеоурок системы уравнений графическим способом

Видеоурок системы уравнений графическим способом

Письмо с инструкцией по восстановлению пароля
будет отправлено на вашу почту

  • Главная
  • 7-Класс
  • Алгебра
  • Видеоурок «Системы линейных уравнений с двумя переменными. Основные понятия»

Давайте познакомимся с понятием «система уравнений» и разберёмся, что будет являться решением системы и сколько таких решений может быть.

Для начала вспомним, что линейные уравнения с двумя переменными– это уравнения вида ах + ву + с = 0. Решением такого уравнения будет являться пара чисел (х; у), которая обратит это уравнение в верное числовое равенство. И таких решений будет бесконечно много. Если все решения изобразить на координатной плоскости, то мы получим прямую, которую называют графиком линейного уравнения с двумя переменными.

А теперь представим себе ситуацию. Я задумала два числа. Известно, что их сумма равна 8, а разность 2. Какие числа я задумала? Если записать эту ситуацию в виде алгебраической модели, то первое условие «сумма чисел равна 8» запишется в виде уравнения х + у = 8. Второе условие «разность равна 2» запишется как х – у = 2. Мы получили два линейных уравнения с двумя неизвестными. Каждое из этих уравнений в отдельности имеет бесконечное число решений. Но нам надо подобрать такую пару чисел, которая являлась бы решением обоих уравнений одновременно. В таких случаях математики договорились записывать эти уравнения особым способом. Их записывают одно под другим и

Это и есть система уравнений. Читают такую запись следующим образом: «система уравнений х+у=8 и х–у=2».

Решить систему– это значит найти все её решения или установить, что их нет.

Решением системыуравнений будет являться такая пара чисел (х; у), которая обратит в верное числовое равенство каждое из уравнений системы.

И тут возникает вопрос: а сколько таких пар нам надо найти? Давайте разбираться. И поможет нам в этом графический способ. Мы знаем, что множество решений каждого из линейных уравнений с двумя переменными можно изобразить на координатной плоскости в виде прямой. А из курса геометрии мы знаем, что прямые на плоскости могут быть параллельными, т.е. не иметь общих точек, или пересекаться, т.е. иметь только одну общую точку. Значит, и наша система может либо не иметь решений вообще, либо иметь только одно решение. Правда, есть ещё один возможный случай расположения прямых – это их полное совпадение. Тогда система будет иметь бесконечное количество решений, что при решении реальных задач практически не встречается.

Давайте решим полученную нами систему графически. Построим график первого уравнения х + у = 8. Выразим переменную у через х и получим выражение у = 8 – х. Для построения прямой достаточно двух точек. Если х = 0, то у = 8. Если х = 3, то у = 5. Получили точки с координатами (0; 8) и (3; 5). Построим прямую, используя найденные точки. Аналогично поступим со вторым уравнением. Представим его в виде у = х – 2. Если х = 0, то у = –2. Если х = 6, то у = 4. Получили точки с координатами (0; –2) и (6; 4). Через них тоже проведём прямую. Теперь на рисунке видим, что наши прямые пересекаются в точке с координатами (5; 3). Найденные значения необходимо проверить. Подставим в оба уравнения системы вместо х число 5, а вместо у —

Читайте также:  Кессонная болезнь способы предотвращения

Получили два верных числовых равенства, значит, решение найдено правильно. Я задумала числа 5 и 3.

Возникает вопрос: всегда ли необходима проверка? Здесь надо отметить, прежде всего, ненадёжность графического способа решения. Ведь не всегда прямые пересекаются в таких удачных точках с целыми координатами. И тогда при определении точки пересечения прямых по чертежу можно потерять сотые и даже десятые доли числа. Да и сама точка пересечения далеко не всегда попадает на наш тетрадный лист. Поэтому решения, найденные графическим способом, необходимо всё-таки проверять. И здесь вы спросите: а есть ли методы решения систем, позволяющие сразу, без рисунков, найти точные решения? Конечно, есть, но это тема отдельного урока.

Источник

Видеоурок системы уравнений графическим способом

Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться , такую группу уравнений мы называем системой.

Объединяем уравнения в систему с помощью фигурной скобки:

Графический метод

Недаром ответ записывается так же, как координаты какой-нибудь точки.

Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.

Например, построим графики уравнений из предыдущего примера.

Пример 1

Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):

Для того чтобы графически решить систему уравнений с двумя переменными нужно:

1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);

Разберем это задание на примере.

Решить графически систему линейных уравнений.

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Пример 2

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Пример 3

Графическое решение системы

Пример 4

Решить графическим способом систему уравнений.

Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.

Прямую y=2x-3 провели через точки (0; -3) и (2; 1).

Прямую y=x+1 провели через точки (0; 1) и (2; 3).

Читайте также:  Бережливое производство это способ наладки оборудования

Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.

Пример 5

Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.

Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).

Наши прямые пересеклись в точке В(-2; 5).

ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.

Видео YouTube

Источник

Алгебра. 9 класс

Вспомним основные понятия.

Решение уравнения с двумя переменными – это пара значений переменных, которая обращает это уравнение в верное равенство.

Решение системы уравнений с двумя переменными – это пара значений переменных, которая обращает каждое уравнение системы в верное равенство.

Решить систему уравнений – это значит найти все её решения, или убедиться, что общих решений у исходных уравнений нет.

Чтобы решить систему уравнений графическим способом нужно построить графики уравнений, входящих в систему, на одной координатной плоскости и найти точки их пересечения.

Вспомним основные виды графиков.

y = kx + b, где k и b – некоторые числа

, где a, b, c и d – некоторые числа, с ≠ 0, adbc ≠ 0

, где n – некоторое чётное число

, где n – некоторое нечётное число

y = x n , где n – некоторое чётное число

y = x n , где n – некоторое нечётное число

Решим несколько задач.

Решите графическим способом систему уравнений

Приведём уравнения к виду, удобному для построения графиков.

Сначала первое уравнение:
x 2 + y 2 = 5 + 2x + 4y;
x 2 – 2x + 1 – 1 + y 2 – 4y + 4 – 4 = 5;
(x – 1) 2 + (y – 2) 2 – 5 = 5;
(x – 1) 2 + (y – 2) 2 = 10.

Теперь второе уравнение:
2x = y – 5;
y = 2x + 5.

Теперь построим графики уравнений на одной координатной плоскости.

Используя чертёж найдем координаты точек пересечения графиков. Получим две точки: А(0; 5) и B(–2; 1).

Подставим найденные значения переменных, чтобы убедиться, что мы нашли точные, а не приближённые решения системы.

Определите, сколько решений может иметь система уравнений в зависимости от значений b

Графиком первого уравнения системы является парабола с вершиной в точке (0; –3).

Графиком второго уравнения системы является окружность с центром в точке (0; 0) и радиусом b.

Построим в одной системе координат график первого уравнения и возможные варианты графика второго уравнения, начиная с маленького радиуса окружности и постепенно его увеличивая.

Таким образом, в зависимости от значения b система может не иметь решений, может имеет 2, 3 или 4 решения.

Источник

Графический способ решения систем уравнений. 9-й класс

Разделы: Математика

Класс: 9

Тип урока: урок изучения нового материала.

Цели урока:

  • открыть совместно с учащимися новый способ решения систем уравнений;
  • вывести алгоритм решения систем уравнений графическим способом;
  • уметь определять сколько решений имеет система уравнений;
  • учить находить решения системы уравнений графическим способом;
  • повторить построение графиков элементарных функций;
  • создать условия для контроля (самоконтроля) учащихся:
  • воспитание ответственного отношения к труду,
  • аккуратности ведения записей.

Ход урока.

I. Организационный момент.

II. Повторение. Подготовка к изучению нового материала. (Приложение 1)

  1. Что такое функция? (слайд 3-11)
  2. Что называется графиком функции?
  3. Какие виды функций вы знаете?
  4. Какой формулой задается линейная функция? Что является графиком линейной функции?
  5. Какой формулой задается прямая пропорциональность? Что является ее графиком?
  6. Какой формулой задается обратная пропорциональность? Что является ее графиком?
  7. Какой формулой задается квадратичная функция? Что является ее графиком?
  8. Каким уравнением задается уравнение окружности?
  9. Что называют уравнением с двумя переменными; (слайд 12)
  10. Выразите переменную у через переменную х:
    а) у – х² = 0
    б) х + у +2 = 0
    в) 2ху + 3 = 0
    г) ху = -12
  11. Является ли пара чисел (1; 0) решением уравнения
    а) х² +у = 1;
    б) ху +3 = х;
    в) у(х +2) = 0.
  12. Что является решением системы уравнений с двумя переменными?
  13. Какая из пар чисел является решением системы уравнений
    а) (6; 3)
    б) (- 3; — 6)
    в) (2; — 1)
    г) (3; 0)

Читайте также:  Сироп от глистов бендикс способ применения
  • Из каких уравнений можно составить систему уравнений, решением которой будет пара чисел (2; 1)
    а) 2х – у = 3
    б) 3х – 2у = 5
    в) х² + у² = 4
    г) ху = 2
  • III. Изучение нового материала. (слайд 16, 17)

    Сегодня мы разберем один из способов решения систем уравнений. Изучение нового материала осуществляется с помощью наглядного восприятия (на слайде представлено графическое решение системы уравнений):

    Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство. Графики уравнений с двумя неизвестными весьма разнообразны.

    Вопросы по данному слайду:

    • Что является графиком уравнения x² +y²=25?
    • Что является графиком уравнения y = —x² +2x +5?

    Координаты любой точки окружности будут удовлетворять уравнению x² + y²=25, координаты любой точки параболы будут удовлетворять уравнению y = — x² +2x +5.

    • Координаты каких точек будут удовлетворять и первому и второму уравнениям?
    • Сколько точек пересечения у данных графиков?
    • Сколько решений имеет данная система?
    • Назвать эти решения?
    • Что нужно сделать, чтобы графически решить систему уравнений с двумя переменными?

    Предлагается слайд, на котором приведен алгоритм графического способа решения систем уравнений с двумя неизвестными.

    Графический способ применим к решению любой системы, но с помощью графиков уравнений можно приближенно находить решения системы. Лишь некоторые найденные решения системы могут оказаться точными. В этом можно убедиться, подставив их координаты в уравнения системы.

    IV. Первичное осмысление и применение изученного способа решения систем уравнений.

    1. Решить графически систему уравнений (слайд 18)

    Постановка наводящих вопросов:

    • Что является графиком уравнения ху = 3?
    • Что является графиком уравнения 3х – у =0?
    • Сколько точек пересечения имеют данные графики?
    • Сколько решений имеет данная система уравнений?
    • Назвать решения данной системы уравнений?

    2. Запишите систему, определяемую этими уравнениями и ее решение. (слайд 19)

    Постановка наводящих вопросов:

    • Запишите систему, определяемую данными уравнениями?
    • Сколько точек пересечения имеют данные графики?
    • Сколько решений имеет данная система уравнений?
    • Назвать решения данной системы уравнений?

    3. Выполнение задание из ГИА (слайд 20).

    4. Решить графически систему уравнений (слайд 21)

    а) б)

    Задание выполняется учащимися в тетрадях. Решение проверяется.

    5. Тест. (Приложение 2)

    Источник

    Оцените статью
    Разные способы