Видеоурок решение систем линейных уравнений графическим способом

Видеоурок решение систем линейных уравнений графическим способом

Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться , такую группу уравнений мы называем системой.

Объединяем уравнения в систему с помощью фигурной скобки:

Графический метод

Недаром ответ записывается так же, как координаты какой-нибудь точки.

Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.

Например, построим графики уравнений из предыдущего примера.

Пример 1

Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):

Для того чтобы графически решить систему уравнений с двумя переменными нужно:

1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);

Разберем это задание на примере.

Решить графически систему линейных уравнений.

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Пример 2

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Пример 3

Графическое решение системы

Пример 4

Решить графическим способом систему уравнений.

Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.

Прямую y=2x-3 провели через точки (0; -3) и (2; 1).

Прямую y=x+1 провели через точки (0; 1) и (2; 3).

Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.

Пример 5

Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.

Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).

Наши прямые пересеклись в точке В(-2; 5).

ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.

Видео YouTube

Источник

Алгебра. 9 класс

Вспомним основные понятия.

Решение уравнения с двумя переменными – это пара значений переменных, которая обращает это уравнение в верное равенство.

Решение системы уравнений с двумя переменными – это пара значений переменных, которая обращает каждое уравнение системы в верное равенство.

Решить систему уравнений – это значит найти все её решения, или убедиться, что общих решений у исходных уравнений нет.

Чтобы решить систему уравнений графическим способом нужно построить графики уравнений, входящих в систему, на одной координатной плоскости и найти точки их пересечения.

Вспомним основные виды графиков.

y = kx + b, где k и b – некоторые числа

, где a, b, c и d – некоторые числа, с ≠ 0, adbc ≠ 0

, где n – некоторое чётное число

, где n – некоторое нечётное число

y = x n , где n – некоторое чётное число

y = x n , где n – некоторое нечётное число

Решим несколько задач.

Решите графическим способом систему уравнений

Приведём уравнения к виду, удобному для построения графиков.

Сначала первое уравнение:
x 2 + y 2 = 5 + 2x + 4y;
x 2 – 2x + 1 – 1 + y 2 – 4y + 4 – 4 = 5;
(x – 1) 2 + (y – 2) 2 – 5 = 5;
(x – 1) 2 + (y – 2) 2 = 10.

Теперь второе уравнение:
2x = y – 5;
y = 2x + 5.

Теперь построим графики уравнений на одной координатной плоскости.

Используя чертёж найдем координаты точек пересечения графиков. Получим две точки: А(0; 5) и B(–2; 1).

Читайте также:  Что такое паллиативный способ лечения

Подставим найденные значения переменных, чтобы убедиться, что мы нашли точные, а не приближённые решения системы.

Определите, сколько решений может иметь система уравнений в зависимости от значений b

Графиком первого уравнения системы является парабола с вершиной в точке (0; –3).

Графиком второго уравнения системы является окружность с центром в точке (0; 0) и радиусом b.

Построим в одной системе координат график первого уравнения и возможные варианты графика второго уравнения, начиная с маленького радиуса окружности и постепенно его увеличивая.

Таким образом, в зависимости от значения b система может не иметь решений, может имеет 2, 3 или 4 решения.

Источник

Видеоурок решение систем линейных уравнений графическим способом

Письмо с инструкцией по восстановлению пароля
будет отправлено на вашу почту

  • Главная
  • 7-Класс
  • Алгебра
  • Видеоурок «Системы линейных уравнений с двумя переменными. Основные понятия»

Давайте познакомимся с понятием «система уравнений» и разберёмся, что будет являться решением системы и сколько таких решений может быть.

Для начала вспомним, что линейные уравнения с двумя переменными– это уравнения вида ах + ву + с = 0. Решением такого уравнения будет являться пара чисел (х; у), которая обратит это уравнение в верное числовое равенство. И таких решений будет бесконечно много. Если все решения изобразить на координатной плоскости, то мы получим прямую, которую называют графиком линейного уравнения с двумя переменными.

А теперь представим себе ситуацию. Я задумала два числа. Известно, что их сумма равна 8, а разность 2. Какие числа я задумала? Если записать эту ситуацию в виде алгебраической модели, то первое условие «сумма чисел равна 8» запишется в виде уравнения х + у = 8. Второе условие «разность равна 2» запишется как х – у = 2. Мы получили два линейных уравнения с двумя неизвестными. Каждое из этих уравнений в отдельности имеет бесконечное число решений. Но нам надо подобрать такую пару чисел, которая являлась бы решением обоих уравнений одновременно. В таких случаях математики договорились записывать эти уравнения особым способом. Их записывают одно под другим и

Это и есть система уравнений. Читают такую запись следующим образом: «система уравнений х+у=8 и х–у=2».

Решить систему– это значит найти все её решения или установить, что их нет.

Решением системыуравнений будет являться такая пара чисел (х; у), которая обратит в верное числовое равенство каждое из уравнений системы.

И тут возникает вопрос: а сколько таких пар нам надо найти? Давайте разбираться. И поможет нам в этом графический способ. Мы знаем, что множество решений каждого из линейных уравнений с двумя переменными можно изобразить на координатной плоскости в виде прямой. А из курса геометрии мы знаем, что прямые на плоскости могут быть параллельными, т.е. не иметь общих точек, или пересекаться, т.е. иметь только одну общую точку. Значит, и наша система может либо не иметь решений вообще, либо иметь только одно решение. Правда, есть ещё один возможный случай расположения прямых – это их полное совпадение. Тогда система будет иметь бесконечное количество решений, что при решении реальных задач практически не встречается.

Давайте решим полученную нами систему графически. Построим график первого уравнения х + у = 8. Выразим переменную у через х и получим выражение у = 8 – х. Для построения прямой достаточно двух точек. Если х = 0, то у = 8. Если х = 3, то у = 5. Получили точки с координатами (0; 8) и (3; 5). Построим прямую, используя найденные точки. Аналогично поступим со вторым уравнением. Представим его в виде у = х – 2. Если х = 0, то у = –2. Если х = 6, то у = 4. Получили точки с координатами (0; –2) и (6; 4). Через них тоже проведём прямую. Теперь на рисунке видим, что наши прямые пересекаются в точке с координатами (5; 3). Найденные значения необходимо проверить. Подставим в оба уравнения системы вместо х число 5, а вместо у —

Читайте также:  Еще один способ управления люстрой

Получили два верных числовых равенства, значит, решение найдено правильно. Я задумала числа 5 и 3.

Возникает вопрос: всегда ли необходима проверка? Здесь надо отметить, прежде всего, ненадёжность графического способа решения. Ведь не всегда прямые пересекаются в таких удачных точках с целыми координатами. И тогда при определении точки пересечения прямых по чертежу можно потерять сотые и даже десятые доли числа. Да и сама точка пересечения далеко не всегда попадает на наш тетрадный лист. Поэтому решения, найденные графическим способом, необходимо всё-таки проверять. И здесь вы спросите: а есть ли методы решения систем, позволяющие сразу, без рисунков, найти точные решения? Конечно, есть, но это тема отдельного урока.

Источник

Графическое решение систем линейных уравнений

Презентация к уроку

Цели и задачи урока:

  • продолжить работу по формированию навыков решения систем уравнений графическим методом;
  • провести исследования и сделать выводы о количестве решений системы двух линейных уравнений;
  • развивать интерес к предмету через игру.

1. Организационный момент (Планерка) – 2 мин.

– Добрый день! Начинаем нашу традиционную планерку. Мы рады приветствовать всех, кто сегодня у нас в гостях, в нашей лаборатории (представляю гостей). Наша лаборатория называется: «ТРУД с интересом и удовольствием» (показываю слайд 2). Название служит девизом в нашей работе. «Твори, Решай, Учись, Добивайся с интересом и удовольствием». Дорогие гости, представляю вам руководителей нашей лаборатории (слайд 3).
Наша лаборатория занимается изучением научных трудов, исследованиями, экспертизой, работает над созданием творческих проектов.
Сегодня тема нашего обсуждения: «Графическое решение систем линейных уравнений». (Предлагаю записать тему урока)

Программа дня: (слайд 4)

1. Планерка
2. Расширенный ученый совет:

  • Выступления по теме
  • Допуск к работе

3. Экспертиза
4. Исследования и открытия
5. Творческий проект
6. Отчет
7. Планирование

2. Опрос и устная работа (Расширенный ученый совет) – 10 мин.

– Сегодня мы проводим расширенный ученый совет, на котором присутствуют не только руководители отделов, но и все члены нашего коллектива. Лаборатория только начала работу по теме: «Графическое решение систем линейных уравнений». Мы должны постараться добиться самых высоких достижений в этом вопросе. Наша лаборатория должна славиться качеством исследований по этой теме. Я, как старший научный сотрудник, желаю всем удачи!

Результаты исследований будут сообщены начальнику лаборатории.

Слово для доклада о решении систем уравнений имеет…(вызываю ученика к доске). Даю заданию задание (карточка 1).

А лаборант…(называю фамилию) напомнит, как строить график функции с модулем. Даю карточку 2.

Карточка 1 (решение задания на слайде 7)

Решить систему уравнений:

Карточка 2 (решение задания на слайде 9)

Построить график функции: y = | 1,5x – 3 |

Пока сотрудники готовятся к докладу, я проверю, как вы готовы к выполнению исследований. Каждый из вас должен получить допуск к работе. (Начинаем устный счет с записью ответов в тетрадь)

Допуск к работе (задания на слайдах 5 и 6)

1) Выразить у через x:

3x + y = 4 (y = 4 – 3x)
5x – y = 2 (y = 5x – 2)
1/2y – x = 7 (y = 2x + 14)
2x + 1/3y – 1 = 0 (y = – 6x + 3)

2) Решить уравнение:

5x + 2 = 0 (x = – 2/5)
4x – 3 = 0 (x = 3/4)
2 – 3x = 0 (x = 2/3)
1/3x + 4 = 0 (x = – 12)

3) Дана система уравнений:

Какая из пар чисел (– 1; 1) или (1; – 1) является решением данной системы уравнений?

Сразу после каждого фрагмента устного счета учащиеся обмениваются тетрадями (с рядом сидящим учеником в одном отделе), на слайдах появляются верные ответы; проверяющий ставит плюс или минус. По окончании работы начальники отделов вносят результаты в сводную таблицу (см ниже); за каждый пример дается 1 балл (возможно получить 9 баллов).
Те, кто набрал 5 и более баллов, получают допуск к работе. Остальные получают условный допуск, т.е. должны будут работать под контролем начальника отдела.

Читайте также:  Способы расчета показателей продукции

Таблица (заполняет начальник)

3

5

п/п Фамилия Допуск Экспертиза Исследования Проект Всего
1 Климов
Бережная
Мацкевич

(Таблицы выдаются до начала урока)

После получения допуска слушаем ответы учащихся у доски. За ответ ученик получает 9 баллов, если ответ полный (максимальное количество при допуске), 4балла, если ответ не полный. Баллы вносят в графу «допуск».
Если на доске правильное решение, то слайды 7 и 9 можно не показывать. Если решение правильное, но нечетко выполненное или решение неправильное, то слайды демонстрируются обязательно с пояснениями.
Слайд 8показываю обязательно после ответа ученика по карточке 1. На этом слайде выводы важные для урока.

Алгоритм решения систем графическим способом:

  • Выразить y через x в каждом уравнении системы.
  • Построить график каждого уравнения системы.
  • Найти координаты точек пересечения графиков.
  • Сделать проверку (обращаю внимание учащихся на то, что графический метод обычно дает приближенное решение, но в случае попадания пересечения графиков в точку с целыми координатами, можно выполнить проверку и получить точный ответ).
  • Записать ответ.

3. Упражнения (Экспертиза) – 5 мин.

Вчера в работе некоторых сотрудников были допущены грубые ошибки. Сегодня вы уже более компетентны в вопросе графического решения. Вам предлагается провести экспертизу предложенных решений, т.е. найти ошибки в решениях. Демонстрируется слайд 10.
Работа идет в отделах. (На каждый стол выдаются ксерокопии заданий с ошибками; в каждом отделе сотрудники должны найти ошибки и подчеркнуть их или исправить; ксерокопии сдать старшему научному сотруднику, т.е. учителю). Тем, кто найдет и исправит ошибку, начальник добавляет 2 балла. Затем обсуждаем допущенные ошибки и указываем их на слайде 10.

Ошибка 1

Решить систему уравнений:

Ответ: решений нет.

Учащиеся должны продолжить прямые до пересечения и получить ответ: (– 2; 1).

Ошибка 2.

Решить систему уравнений:

Учащиеся должны найти ошибку в преобразовании первого уравнения и исправить на готовом чертеже. Получить другой ответ: (2; 5).

4. Объяснение нового материала (Исследования и открытия) – 12 мин.

Учащимся предлагаю решить графически три системы. Каждый ученик решает самостоятельно в тетради. Консультироваться могут только те, у кого условный допуск.

Решение

Без построения графиков понятно, что прямые совпадут.

На слайде 11 показано решение систем; ожидаемо, что учащиеся будут испытывать затруднение при записи ответа в примере 3. После работы в отделах проверяем решение (за верное начальник добавляет 2 балла). Теперь пришло время обсудить, сколько решений может иметь система двух линейных уравнений.
Учащиеся должны сделать выводы самостоятельно и объяснить их, перечислив случаи взаимного расположения прямых на плоскости (слайд 12).

5. Творческий проект (Упражнения) – 12 мин.

Задание дается для отдела. Начальник дает каждому лаборанту по способностям фрагмент его выполнения.

Решить системы уравнений графически:

После раскрытия скобок учащиеся должны получить систему:

После раскрытия скобок первое уравнение имеет вид: y = 2/3x + 4.

6. Отчет (проверка выполнения задания) – 2 мин.

После выполнения творческого проекта учащиеся сдают тетради. На слайде 13 показываю то, что должно было получиться. Начальники сдают таблицу. Последнюю графу заполняет учитель и ставит отметку (отметки можно сообщить ученикам на следующем уроке). В проекте решение первой системы оценивается тремя баллами, а второй – четырьмя.

7. Планирование (подведение итогов и домашнее задание) – 2 мин.

Подведем итоги нашего труда. Мы неплохо поработали. Конкретно о результатах поговорим завтра на планерке. Безусловно, все без исключения лаборанты овладели графическим методом решения систем уравнений, усвоили, какое количество решений может иметь система. Завтра каждого из вас ждет персональный проект. Для дополнительной подготовки: п.36; 647-649(2); повторите аналитические методы решение систем. 649(2) решите и аналитическим методом.

Нашу работу в течение всего дня контролировал директор лаборатории Ноумэн Ноу Мэнович. Ему слово. (Показываю заключительный слайд).

Источник

Оцените статью
Разные способы