Вид погрешности случайная способ устранения

Погрешности измерений и способы их устранения

Погрешность измерений или погрешность результата измерения Δ — это отклонение результата измерения Xi от истинного значения величины Xист:

За истинное значение, которое точно неизвестно, принимается номинальный размер, среднее арифметическое ряда многократных измерений или величина, полученная более точными СИ.

Точность измерений характеризуется погрешностью измерений, которая должна стремиться к нулю.

По форме представления (нормирования) погрешности разделяются на абсолютные, относительные и приведенные.

По характеру изменения результата при повторных измерениях погрешности разделяются на систематические, случайные и промахи (грубые).

По причине возникновения погрешности разделяются на объективные и субъективные. Используя комплект измерительный К540 удается избежать больших погрешностей при измерении тока.

Основные составляющие суммарной систематической погрешности измерений:
— погрешности средств измерения (инструментальные);
— методические погрешности, обусловленные несовершенством метода измерения и построения математических зависимостей;
— погрешности установочных мер;
— погрешности, зависящие от измерительного усилия;
— температурные погрешности;
— субъективные погрешности;
— погрешность базирования.

Применяются четыре способа исключения систематических погрешностей:
1. Ликвидация источников погрешностей до начала измерения (профилактика измерений).
2. В процессе измерений (экспериментальное исключение).
3. По окончанию измерений путем добавления поправок (вычислением).
4. Перевод не исключенных систематических погрешностей в разряд случайных и выполнение многократных измерений.

После выполнения измерений в результат может быть введена поправка, равная известной систематической погрешности по величине, но обратная ей по знаку:

где Xд — действительное значение измеряемой величины, Xi — результат измерения, q — поправка.

Источник

Методы повышения точности измерений

Анализ причин появления погрешностей измерений, выбор способов их обнаружения и уменьшения являются основными этапами процесса измерений. Погрешности измерений, принято делить на систематические и случайные. В процессе измерений систематические и случайные погрешности проявляются совместно и образуют нестационарный случайный процесс. Деление погрешностей на систематические и случайные является удобным приемом для их анализа и разработки методов уменьшения их влияния на результат измерения.

Рассмотрим способы обнаружения и исключения систематических погрешностей, поскольку они зависят от выбора метода измерений и его осуществелния.

По характеру изменения систематические погрешности делятся:

  • постоянные – погрешности, связанные с неточной градуировкой шкалы прибора, отклонением размера меры от номинального значения, неточным выбором моделей объектов.
  • переменные
    – периодические – погрешность изменяющаяся по периодическому закону, например погрешность отсчета при определении времени по башенным часам, если смотреть на стрелку снизу, температурная погрешность от изменения температуры в течение суток и т.п.
    – прогрессирующие – погрешности монотонно изменяющиеся (увеличивающиеся или уменьшающиеся) в общем случае по сложному, обычно неизвестному закону. Прогрессирующие погрешности во многих случаях обусловлены старением элементов средств измерений и могут быть скорректированы при его периодической поверке.

По причине возникновения погрешности измерений разделяются на три основные группы:

  • методические – погрешности обусловленные неадекватностью принимаемых моделей реальным объектам, несовершенством методов измерений, упрощением зависимостей, положенных в основу измерений, неопределенностью объекта измерения;
  • инструментальные – погрешности обусловленные прежде всего особенностями используемых в средствах измерений принципов и методов измерений, а также схемным, конструктивным и технологическим несовершенством средств измерений.
  • взаимодейтствия – обусловлены взаимным влиянием средства измерений, объекта исследования и экспериментатора. Погрешности из-за взаимного влияния средства и объекта измерений обычно принято относить к методическим погрешностям, а погрешности, связанные с действиями экспериментатора, называются личными погрешностями. Однако такая классификация недостаточно полно отражает суть рассматриваемых погрешностей.

Выявление и устранение причин возникновения погрешностей – наиболее распространенный способ уменьшения всех видов систематических погрешностей. Примерами такого способа являются: термостатирование отдельных узлов или прибора в целом, а также проведение измерений в термостатированных помещениях для исключения температурной погрешности, применение экранов, фильтров и специальных цепей (например, эквипотенциальных цепей) для устранения погрешностей из-за влияния электромагнитных полей, наводок и токов утечек, применение стабилизированных источников питания.

Для уменьшения прогрессирующей погрешности из-за старения элементов средств измерений, параметры таких элементов стабилизируют путем искусственного и естественного старения. Кроме этого систематические погрешности можно уменьшить рациональным расположением средств измерений по отношению друг к другу, к источнику влияющих воздействий и к объекту исследования. Например магнитоэлектрические приборы должны быть удалены друг от друга, оси катушек индуктивности, должны быть расположены под углом 90°, выводы термопары должны располагаться по изотермическим линиям объекта.

Многие систематические погрешности, являющиеся не изменяющимися во времени функциями влияющих величин или обусловленные стабильными физическими эффектами, могут быть теоретически рассчитаны и устранены введением поправок или использованием специальных корректирующих цепей.

Другим радикальным способом устранения систематических погрешностей является поверки средств измерений в рабочих условиях с целью определения поправок к результатам измерения. Это дает возможность учесть все систематические погрешности без выяснения причин их возникновения. Степень коррекции систематических погрешностей в этом случае, естественно, зависит от метрологических характеристик используемых эталонных приборов и случайных погрешностей поверяемых приборов.

Читайте также:  Кто ласточка по способу питания

Фактически поверка средств измерений перед их использованием и введение поправок адекватна применению средств измерений более высоких классов точности при условии, что случайные погрешности средств измерений малы по сравнению с систематическими, а сами систематические погрешности медленно изменяются во времени.

Метод инвертирования широко используется для устранения ряда постоянных и медленно изменяющихся систематических погрешностей. Этот метод и ряд его разновидностей (метод исключения погрешности по знаку, коммутационного инвертирования, структурной модуляции, двукратных измерений, инвертирования функции преобразования и др.) основаны на выделении алгебраической суммы чесного числа сигналов измерительной информации, которые вследствие инвертирования отличаются направлением информативного сигнала, опорного сигнала или знаком погрешности.

Метод модуляции – метод близкий к методу инвертирования, в котором производится периодическое инвертирование входного сигнала и подавление помехи, имеющей однонаправленное действие.

Метод исключения погрешности по знаку — вариант метода инвертирования, который часто применяется для исключения известных по природе погрешностей, источники которых имеют направленное действие, например погрешностей из-за влияния постоянных магнитных полей, ТЭДС и др.

Метод замещения (метод разновременного сравнения) является наиболее универсальным методом, который дает возможность устранить большинство систематических погрешностей. Измерения осуществляются в два приема. Сначала по отсчетному устройству прибора делают отсчет измеряемой величины, затем, сохраняя все условия эксперимента неизменными, вместо измеряемой величины на вход прибора подают известную величину, значение которой с помощью регулируемой меры (калибратором) устанавливают таким образом, чтобы показание прибора было таким же, как при включении измеряемой величины.

Метод равномерного компарирования является разновидностью метода замещения, он используется при измерениях таких величин, которые нельзя с высокой точностью воспроизводить с помощью регулируемых мер или других технических средств. Обычно это величины, изменяющиеся с высокой частотой или по сложному закону. В качестве известных регулируемых величин при этом используются величины такого же рода, как измеряемые, но отличаютщиеся от них спектральным составом (обычно постоянные во времени и в пространстве) и создающие такой же, как и измеряемая величина, сигнал на выходе компарирующего преобразователя.

Метод эталонных сигналов заключается в том, что на вход средств измерений периодически вместо измеряемой величины подаются эталонные сигналы такого же рода, что и измеряемая величина. Разность между реальной градуировочной характеристикой используется для коррекции чувствительности или для автоматического введения поправки в результат измерения. При этом, как и при методе замещения, устраняются все систематические погрешности, но только в тех точках диапазона измерений, которые соответствуют эталонным сигналам. Метод широко используется в современных точных цифровых приборах и в информационно-измерительных системах. Примером использования этого метода является периодическая подстройка рабочего тока в компенсаторах и цифровых вольтметрах постоянного тока при помощи нормального элемента.

Тестовый метод – при использовании данного метода значение измеряемой величины определяется по результатам нескольких наблюдений, при которых в одном случае входным сигналом средства измерений является сама измеряемая величина Х, а в других – так называемые тесты, являющиеся функциями измеряемой величины.

Метод вспомагательных измерений используется для исключения погрешностей из-за влияющих величин и неинформативных параметров входного сигнала. Для реальзации этого метода одновременно с измеряемой величиной Х с помощью вспомогательных измерительных устройств производится измерение каждой из влияющих величин и вычисление с помощью вычислительного устройства, а также формул и алгоритмов поправок к результатам измерения.

Метод симметричных наблюдений заключается в проведении многократных наблюдений через равные промежутки времени и усреднении результатов наблюдений, симметрично расположенных относительно среднего наблюдения. Обычно этот метод применяется для исключения прогрессирующих погрешностей, изменяющихся по линейному закону. Так, при измерении сопротивления резистора путем сравнения напряжения на измеряемом и эталонном резисторах, включенных последовательно и питаемых от общего аккумулятора, может возникнуть погрешность вследствие разряда источника питания.
Для исключения этой погрешности проводят три измерения падения напряжения:

  • на эталонном резисторе U01 = I·R0;
  • через равные промежутки времени на измеряемом резисторе UX = (I — ΔI1)·RX;
  • снова на эталонном резисторе U02 = (I — ΔI2)·R0.
  • Если ток изменяется во времени по линейному закону, то ΔI2 = 2ΔI1; I — ΔI1 = (U01 + U02) / (2R0) и RX = R0·2·UX / (U01 + U02).

Метод симметричных наблюдений можно также использовать для устранения других видов погрешностей, например систематических погрешностей из-за влияющих величин, изменяющихся по периодическому закону. В этом случае симметричные наблюдения проводят через половину периода, когда погрешность имеет разные знаки, но одинаковые значения. Таким образом, например, можно исключить погрешность из-за наличия четных гармоник при измерении амплитудного значения напряжения при искаженной форме кривой.

Источник

Случайные погрешности и способы их уменьшения

Случайные погрешности измерений. Возникновение случайных погрешностей измерений и их свойства. Описание случайных погрешностей с помощью функции распределения. Доверительная вероятность и доверительный интервал. Способы уменьшения случайных погрешностей.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 24.10.2017
Размер файла 561,2 K
Читайте также:  Засолить порезанные огурцы холодным способом

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Случайные погрешности измерений

1.1. Возникновение случайных погрешностей измерений

1.2. Свойства случайных погрешностей измерений

1.3. Описание случайных погрешностей с помощью функции распределения

1.4. Оценка случайных погрешностей. Доверительная вероятность и доверительный интервал

2. Способы уменьшения случайных погрешностей

2.1 Метод многократных измерений

2.2 Метод косвенных измерений

Начиная с производства строительных материалов и заканчивая возведением зданий и сооружений, в строительстве используются измерения различных видов.

Процесс измерения неизбежно сопровождается ошибками, которые вызываются несовершенством измерительных средств, нестабильностью условий проведения измерений, несовершенством самого метода и методики измерений и многими другими факторами.

Основная цель данного реферата — проанализировать и выявить наиболее точные способы уменьшения случайных погрешностей измерений. Для этой цели необходимо метрологическое обеспечение, т.е. установление и применение научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и требуемой точности измерений.

Техническими основами метрологического обеспечения являются: система государственных эталонов единиц физических величин, система передачи размеров единиц физических величин от эталона всем средствам измерений, система разработки, постановки на производство и выпуска рабочих средств измерений, система обязательных государственных испытаний средств измерений, система стандартных образцов состава свойств веществ и материалов.

В соответствии с данной целью определены следующие задачи: раскрыть понятие и классификацию погрешностей измерений; описать способы уменьшения случайных погрешностей.

Тема реферата «Случайные погрешности и способы их уменьшения» является актуальной, т.к. чем качественнее будет строительный материал (конструкция), тем он будет более конкурентноспособен на отечественном и мировом рынках. Определяющим условием выбора для потребителей в последнее время всё больше становится качество. Качеством продукции необходимо управлять, уметь количественно оценивать и анализировать его показатели, варьировать влияющими на него процессами.

1. СЛУЧАЙНЫЕ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

1.1 Возникновения случайных погрешностей

Случайная погрешность — составляющая погрешности измерения, измеряющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера физической величины, проведенных с одинаковой тщательностью в одних и тех же условиях.

Факторы, определяющие возникновения случайных погрешностей, проявляются нерегулярно, в различных комбинациях и с интенсивностью, которую трудно предвидеть.

Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности слабо влияет на результат измерения. По этой причине часто полагают распределение случайной погрешности «нормальным» (Центральная предельная теорема). «Нормальность» позволяет использовать в обработке данных весь арсенал математической статистики.

Однако априорная убежденность в «нормальности» на основании ЦПТ не согласуется с практикой — законы распределения ошибок измерений весьма разнообразны и, как правило, сильно отличаются от нормального.

Случайные погрешности могут быть связаны с:

· несовершенством приборов (трение в механических приборах и т. п.),

· тряской в городских условиях,

· несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления).

Основным документом для обеспечения качества измерений, обеспечения единства измерений является Федеральный закон от 26.06.2008 № 102-ФЗ (ред. от 13.07.2015) «Об обеспечении единства измерений». Глава 2. Требования к измерениям, единицам величин, эталонам единиц величин, стандартным образцам, средствам измерений. Статья 5.Требования к измерениям.

Допускает применение результатов измерений, выраженных в единицах величин только на территории Российской Федерации.

1.2 Свойства случайных погрешностей

Случайные погрешности характеризуются следующими свойствами.

1) При определенных условиях измерений случайные погрешности по абсолютной величине не могут превышать известного предела, называемого предельной погрешностью. Это свойство позволяет обнаруживать и исключать из результатов измерений грубые погрешности.

2) Положительные и отрицательные случайные погрешности примерно одинаково часто встречаются в ряду измерений, что помогает выявлению систематических погрешностей.

3) Чем больше абсолютная величина погрешности, тем реже она встречается в ряду измерений.

В соответствии с первым свойством случайных погрешностей для абсолютной величины случайной погрешности при данных условиях измерений существует допустимый предел, называемый предельной погрешностью. В строительных нормах предельная погрешность называется допускаемым отклонением.

Последнее свойство случайных погрешностей позволяет установить принцип получения из ряда измерений одной и той же величины результата, наиболее близкого к ее истинному значению, т. е. наиболее точного. Таким результатом является среднее арифметическое из п измеренных значений данной величины.

Для правильного использования результатов измерений необходимо знать, с какой точностью, т.е. с какой степенью близости к истинному значению измеряемой величины, они получены. Характеристикой точности отдельного измерения в теории погрешностей служит предложенная Гауссом средняя квадратическая погрешность.

1.3 Описание случайных погрешностей с помощью функции распределения

Интегральной функцией распределения F(x) называют функцию, значение которой для каждого x является вероятность появления значений (в i-м наблюдении), меньших x:

где Р — символ вероятности события, описание которого заключено в фигурных скобках.

Читайте также:  Каким способом общество может защитить справедливость от человеческих пороков сочинение

Обычно график интегральной функции распределения результатов наблюдений представляет собой непрерывную неубывающую кривую, начинающуюся от нуля на отрицательной бесконечности и асимптотически приближающуюся к единице при увеличении аргумента до плюс бесконечности.

Если интегральная функция имеет точку перегиба при значении x, близком к истинному значению измеряемой величины, и принимает в этой точке значение, равное 0, 5, то говорят о симметричности распределения результатов.

Более наглядным является описание свойств результатов наблюдений, содержащих случайные погрешности, с помощью дифференциальной функции распределения, иначе называемой плотностью распределения вероятностей:

Поскольку F(x = +) = 1, то , т.е. площадь, заключенная между кривой дифференциальной функции распределения и осью абсцисс, равна единице. Вероятность попадания случайной величины х в заданный интервал ( равна площади, заключенной между абсциссами и :

При бесконечном увеличении числа наблюдений n>? и бесконечном уменьшении ширины интервалов ?l>0, ступенчатая кривая, огибающая гистограмму, перейдет в плавную кривую f (x) (рис. 1), называемую кривой плотности распределения вероятностей случайной величины, а уравнение, описывающее ее, — дифференциальным законом распределения. Кривая плотности распределения вероятностей всегда неотрицательна и подчинена условию нормирования в виде

Рис.1. Кривая плотности распределения вероятностей

Закон распределения дает полную информацию о свойствах случайной величины и позволяет ответить на поставленные вопросы о результате измерения и его случайной погрешности.

Следовательно, рассмотренное выше условие нормирования означает, что вероятность попадания величины х в интервал [- ?; + ?] равна единице, т.е. представляет собой достоверное событие.

Вероятность этого события называется функцией распределения случайной величины и обозначается F(x). Функцию распределения F(x) иногда называют также интегральной функцией распределения. В терминах интегральной функции распределения имеем

То есть вероятность попадания результата наблюдений или случайной погрешности в заданный интервал равна разности значений функции распределения на границах этого интервала.

Рис. 2. Кривая плотности распределения вероятностей (дифференциальная функция распределения случайной величины).

1.4 Оценка случайных погрешностей. Доверительная вероятность и доверительный интервал

случайный погрешность измерение интервал

Для количественной оценки случайных погрешностей и установления границ случайной погрешности результата измерения могут использоваться: предельная погрешность, интервальная оценка, числовые характеристики закона распределения. Выбор конкретной оценки определяется необходимой полнотой сведений о погрешности, назначением измерений и характером использования их результатов. Комплексы оценок показателей точности установлены стандартами.

Предельная погрешность ?m — погрешность, больше которой в данном измерительном эксперименте не может появиться. Теоретически, такая оценка погрешности правомерна только для распределений, границы которых четко выражены и существует такое значение ± ?m, которое ограничивает возможные значения случайных погрешностей с обеих сторон от центра распределения (например, равномерное).

На практике такая оценка есть указание наибольшей погрешности, которая может встретиться при многократных измерениях одной и той же величины.

Недостатком такой оценки является то, что она не содержит информации о характере закона распределения случайных погрешностей. При арифметическом суммировании предельных погрешностей получаемая сумма может значительно превышать действительные погрешности.

Более универсальными и информативными являются квантильные оценки. Площадь, заключенная под всей кривой плотности распределения погрешностей, отражает вероятность всех возможных значений погрешности и по условиям нормирования равна единице. Эту площадь можно разделить вертикальными линиями на части. Абсциссы таких линий называются квантилями.

Так, на рис. 3 ?x1, есть 25% -ная квантиль, так как площадь под кривой f (?x) слева от нее составляет 25% всей площади. Абсцисса ?x2 соответствует 75%-ной квантили. Между ?x1, и ?x2 заключено 50% всех возможных значений погрешности, а остальные лежат вне этого интервала.

Рис. 3 Квантильные оценки случайной величины

Квантильная оценка погрешности представляется интервалом от -?x(P) до +?x(P), на котором с заданной вероятностью С встречаются СЧ100% всех возможных значений случайной погрешности. Интервал с границами ± ?x(P) называется доверительным интервалом случайной погрешности, между границами которого с заданной доверительной вероятностью

где q — уровень значимости;

хН, хВ — нижняя и верхняя границы интервала, находится истинное значение оцениваемого параметра.

Принято границы доверительного интервала (доверительные границы) указывать симметричными относительно результата измерения. В метрологической практике используют главным образом квантильные оценки доверительного интервала. Под Р-процентным квантилем xP понимают абсциссу такой вертикальной линии, слева от которой площадь под кривой плотности распределения равна Р %. Иначе говоря, квантиль — это значение случайной величины (погрешности) с заданной доверительной вероятностью Р.

Так как квантили, ограничивающие доверительный интервал по- грешности могут быть выбраны различными, то при оценивании случайной погрешности доверительными границами необходимо одновременно указывать значение принятой доверительной вероятности (например, ±0, 3 В при С = 0, 95).

Доверительные границы случайной погрешности ?x(P), соответствующие доверительной вероятности Р, находят по формуле

где t — коэффициент, зависящий от С и формы закона распределения.

Рис. 4. К понятию доверительных интервалов

На графике нормального распределения погрешностей (рис. 4) по оси абсцисс отложены интервалы с границами ±у, ±2у, ±3у, ±4у. Доверительные вероятности для этих интервалов приведены в табл. 1.

Таблица 1. Границы доверительных интервалов и соответствующие им доверительные вероятности

Источник

Оцените статью
Разные способы