- Векторный способ задания положения тела
- Кинематика. Задание положения точки.
- Векторный способ задания положения точки .
- Способы задания положения тела в пространстве
- Векторный способ задания движения точки
- Введение
- Основные формулы при векторном способе задания движения
- Скорость точки
- Ускорение точки
- Тангенциальное ускорение
- Нормальное ускорение
Векторный способ задания положения тела
Движение. Виды движений. Описание движения. Система отсчета.
Механическим движением тела (точки) называется изменение его положения в пространстве относительно других тел с течением времени.
А) Равномерное прямолинейное движение материальной точки.
Б) Равноускоренное прямолинейное движение материальной точки.
В) Движение тела по дуге окружности с постоянной по модулю скоростью.
Г) Гармоническое колебательное движение. Важным случаем механического движения являются колебания, при которых параметры движения точки (координаты, скорость, ускорение) повторяются через определенные промежутки времени.
1. Векторный способ описания движения
ОПРЕДЕЛЕНИЕ: Векторный способ описания движения – это описание изменения радиус-вектора материальной точки в пространстве с течением времени.
Рассмотрим движение точки М в некоторой системе отсчета Oxyz (рис.1). Зададим радиус-вектор точки r — вектор, соединяющий начало координат с этой точкой.
При движении точки M вектор r будет с течением времени изменяться, т.е. будет каким-то образом зависеть от времени. Эта зависимость r = r ( t ) представляет собой закон движения в векторном виде.
В процессе движения конец радиус-вектора будет описывать траекторию, а его изменение – перемещение s точки.
2. Координатный способ описания движения
ОПРЕДЕЛЕНИЕ: Координатный способ описания движения – описание изменения во времени координат точки в выбранной системе отсчета.
В декартовой системе координат положение точки определяется тройкой чисел ( x , y , z ) — ее декартовыми координатами.
Чтобы задать закон движения точки, необходимо знать значения ее координат в каждый момент времени. Закон движения в координатном виде в общем случае представляет собой систему трех уравнений: x = x ( t ), y = y ( t ), z = z ( t )
Между векторным и координатным способом описания движения существует непосредственная связь, а именно: числовые значения проекций радиус-вектора движущейся точки на координатные оси системы с тем же началом отсчета равны координатам точки: rx = x , ry = y , rz = z .
3. Естественный способ описания движения
ОПРЕДЕЛЕНИЕ: Естественный способ описания движения – описание движения вдоль траектории. Этим способом пользуются, когда траектория точки заранее известна.
Пусть точка М движется вдоль траектории АВ в системе отсчета Oxyz (рис.3). Выберем на траектории какую-нибудь неподвижную точку О 1 , которую будем считать началом отсчета, и определим положительное и отрицательное направления. Тогда положение точки M будет определяться расстоянием S от точки О 1 . При движении точка М переместится в точку М 1 , соответственно изменится ее расстояние от точки О 1 . Таким образом, расстояние S зависит от времени, а характер этой зависимости позволит определить положение точки М на траектории в любой момент времени. Закон движения в этом случае имеет вид: s = s ( t ) .
Под системой отсчета понимают тело отсчета, которое условно считается неподвижным, систему координат, связанную с телом отсчета, и часы, также связанные с телом отсчета. В кинематике система отсчета выбирается в соответствии с конкретными условиями задачи описания движения тела.
Источник
Кинематика. Задание положения точки.
Положение точки в пространстве можно задать двумя способами: координатным и векторным.
При задании движения координатным способом с телом отсчета связывают какую-либо систему координат, например, декартовую. Движение точки М будет задано в том случае, если ее координаты будут известны, как функции времени:
Эти зависимости называются уравнениями движения точки в декартовых координатах. Они выражают текущие координаты движущейся точки в виде функций времени. Если точка движется, оставаясь все время в одной плоскости, можно ограничиться двумя уравнениями движения: x = x(t), y = y(t).
Векторный способ задания положения точки .
Допустим, М – движущаяся точка относительно тела отсчета А. В теле А в качестве точки отсчета выберем произвольную точку О и построим вектор Этот вектор называется радиус-вектором точки М.
Радиус-вектор – это вектор, соединяющий начало отсчета с положением точки в любой момент времени.
Когда точка М движется, радиус-вектор непрерывно изменяется во времени, поэтому существует некоторая вектор-функция времени
Зная эту функцию, для каждого времени t можно построить вектор
и тем самым найти положение движущейся точки в данный момент. Функция
называется векторным законом (векторным уравнением) движения точки М.
Точка задается радиус-вектором, если известны его длина (модуль) и направление в пространстве, другими словами – значения его проекций rx, ry, rz на оси координат OX, OY и OZ, или углы между радиус-вектором и осями координат. При рассмотрении движения на плоскости:
Здесь за мы принимаем модуль радиус-вектора
, а rx и ry являются его проекциями на оси координат, все три величины скалярны, x и y – координаты точки А.
Из этих уравнений видно, что между координатным и векторным способами задания положения точки существует связь.
Источник
Способы задания положения тела в пространстве
1. Описание движения с помощью параметров траектории.
Пусть траектория движения известна. Тогда, зная зависимость пути, пройденного телом, от времени, можно определить его положение в любой момент.
2. Векторный способ описания движения.
Положение тела в пространстве можно задать также в виде радиуса-вектора r. В произвольный момент времени оно определяется зависимостью r(t) . Вектор перемещения s(t) рассчитывается как разность между величинами радиуса-вектора r(t) в различные моменты времени t .
3.Координатный способ описания движения.
Поскольку векторная величина может быть представлена как сумма ее проекций, то положение тела в пространстве в любой момент времени можно определить, исходя из зависимостей от времени проекций радиуса-вектора на оси координат x(t), y(t), z(t).
3. Кинематика материальной точки: Путь, перемещение, траектория. Скорость (средний вектор скорости, мгновенная скорость). Проекции вектора скорости на оси координат. Равномерное движение.
Радиус-вектор –вектор, проведенный из начала координат в данную точку.
Траектория –линия, вдоль которой движется частица.
Путь –длина траектории.
Вектор перемещения –отрезок, поведенный из начального положения тела в конечное.
Скорость –быстрота изменения положения точки в пространстве.
1) Средняя – величина, равная проеденному пути ко времени, в течение которого продолжалось движение.
2) Мгновенная – величина, равная производной от радиуса-вектора точки по времени.
υ = lim ∆r/∆t, при ∆t→0 или υ=r’
Равноме́рное движе́ние — механическое движение, при котором тело за любые равные отрезки времени проходит одинаковое расстояние
4. Прямолинейное равнопеременное движение, его характеристики и их взаимосвязь.
Равнопеременное движение, движение точки, при котором её касательное ускорение wt (в случае прямолинейного Р. д. всё ускорение w) постоянно. Скорость v, которую имеет точка через t сек после начала движения, и её расстояние s от начального положения, измеренное вдоль дуги траектории, определяются при Р. д. равенствами:
где v0 — начальная скорость точки. Когда знаки v и wt одинаковы, Р. д. является ускоренным, а когда разные — замедленным.
5. Движение материальной точки при движении по криволинейной траектории, тангенциальное, нормальное и полное ускорения.
При неравномерном движении скорость частицы может меняться как по величине, так и по направлению. Быстрота изменения скорости определяется ускорением, которое равно первой производной от скорости по времени или второй производной от пути по времени.
Ускорение –изменение скорости тела со временем.
a= lim ∆υ/∆t=dυ/dt= υ’ при ∆t→0
a=d/dt*(dr/dt)=d 2 r/dt 2 =dr/dt=r’’
Быстрота поворота вектора скорости пропорциональна модулю скорости и кривизны траектории.
с=lim ∆φ/∆S=∆φ/∆S, при ∆S→0 ,
∆φ – угол между кривой и касательной
R=1/С – радиус кривизны
Тангенциальное ускорение – изменение величины вектора скорости точки со временем.
Нормальное ускорение-изменение направления вектора скорости материальной точки со временем.
an=a-aτ=(υ 2 /R)*n, где n-вектор нормали, перпендикулярный вектору τ, т.е(n, τ)=0, τ-единичный вектор направленный параллельно вектору скорости
R- радиус кривизны, где определяется скорость движения или радиус окружности касательной в данной точке к искривленной траектории движения.
6. Прямая и обратная задача кинематики. Поступательное и вращательное движение твердого тела.
Абсолютно твердое тело —тело деформациями которого можно пренебречь в данной задаче.
Поступательное движение – движение при котором любая прямая, жестко связанная с телом остается при своём движение параллельно самой себе.
Следовательно, для описания поступательного движения твердого тела достаточно знать, как движется одна из его точек.
Вращательное движение – движение тела, при котором все его точки движутся по окружности, центры которых лежат на одной прямой, называемой осью вращения, а плоскости окружности перпендикулярны оси вращения.
7. Кинематические характеристики вращательного движения, связь между угловыми и линейными характеристиками движения материальной точки.
Угловая скорость –это вектор ω, численно равный первой производной от угла поворота по времени, и направленный вдоль оси вращения в направлении dφ (ω и dφ всегда направлены в одну сторону).
ω=lim ∆φ/∆t=dφ /dt при ∆t→0
Угловая скорость направлена вдоль оси вращения в сторону, определяемую правилом правого винта. Как и угол поворота ∆φ, она является псевдовектором
При неравномерном вращении вектор угловой скорости может менять как свою величину, так и свое направление за счет поворота оси вращения.
Угловое ускорение –это вектор ε, второй производной от угла поворота по времени.
ε=lim ∆ω/∆t=dω/dt при ∆t→0
Угловое ускорение тоже является пседовектором, его размерность. Если e >0, то вектор направлен в ту же сторону, куда направлен и вектор. Если e
Источник
Векторный способ задания движения точки
Введение
Положение точки однозначно определяется заданием ее радиус-вектора , который изменяется со временем при движении точки. При векторном способе задания движения считается, что задан закон изменения радиус-вектора от времени . Векторный способ задания движения применяется для описания движения в общем виде, используя векторные формулы.
Например, для точки, движущейся с постоянным ускорением , радиус-вектор определяется одной векторной формулой:
,
где – постоянные векторы, не зависящие от времени. Применяя формулы, мы можем найти кинематические величины в векторном виде, не зависимо от выбранной системы координат.
При координатном способе задания движения, мы выбираем систему координат, и в ней задаем зависимости координат точки от времени . Таким образом, координатный способ привязан к выбранной системе координат, а векторный способ не зависит от системы координат.
Связь векторного способа задания движения с координатным осуществляется по формуле:
,
где – единичные векторы (орты) в направлении осей выбранной системы координат.
Основные формулы при векторном способе задания движения
Скорость точки
Выводы приведенных ниже формул и изложение теории приводится на странице “Кинематика материальной точки”. Здесь мы приводим основные результаты этой теории в векторном виде.
Итак, нам задана зависимость радиус-вектора материальной точки M от времени :
.
Дифференцируя радиус-вектор по времени, мы находим вектор скорости точки:
.
Модуль вектора скорости:
,
где в круглых скобках обозначено скалярное произведение векторов.
Скорость точки направлена по касательной к траектории. Пусть – единичный вектор в направлении касательной. Тогда скорость может быть направленной либо вдоль вектора :
,
либо в противоположную сторону:
.
Чтобы охватить эти два случая, вводят алгебраическую величину скорости :
.
Это скалярная величина, равная по абсолютной величине модулю скорости, но она может принимать как положительные, так и отрицательные значения:
.
При , вектор скорости сонаправлен с . При он направлен в противоположную сторону. Величина является проекцией вектора скорости на направление . Поскольку – это единичный вектор, то
.
Единичный вектор в направлении касательной к траектории:
.
Ускорение точки
Дифференцируя вектор скорости по времени, находим вектор ускорения точки:
.
Модуль вектора ускорения:
.
Разложим вектор ускорения на две взаимно перпендикулярные компоненты: – параллельную касательной к траектории; и – перпендикулярную к ней.
.
Компонента называется касательным, или тангенциальным ускорением, а компонента – нормальным ускорением.
Тангенциальное ускорение
Алгебраическая величина тангенциального ускорения – это скалярная величина, равная проекции полного ускорения на направление единичного вектора , касательного к траектории:
.
Тогда вектор тангенциального ускорения можно записать в следующем виде:
.
Величина может быть как положительной, так и отрицательной. При положительном , вектор касательного ускорения сонаправлен с единичным вектором . При отрицательном – вектор касательного ускорения направлен в противоположную сторону. Модуль равен модулю касательного ускорения:
.
Алгебраическая величина тангенциального ускорения равна производной по времени от алгебраической величины скорости:
.
Производная по времени модуля скорости:
.
Если между векторами скорости и ускорения острый угол, то движение ускоренное. Если между ними тупой угол, то движение замедленное.
Нормальное ускорение
Вектор нормального ускорения:
.
; .
Единичный вектор в направлении главной нормали траектории:
.
Вектор перпендикулярен вектору и направлен к центру кривизны траектории. Нормальное ускорение всегда направлено к центу кривизны траектории. Поэтому, если выразить его через единичный вектор главной нормали:
,
то . Поэтому .
Модуль нормального ускорения равен проекции полного ускорения на направление главной нормали:
.
Имеют место следующие формулы:
.
Радиус кривизны траектории:
.
Центр кривизны траектории:
.
Единичный вектор в направлении бинормали:
.
Автор: Олег Одинцов . Опубликовано: 06-03-2016 Изменено: 29-01-2020
Источник