Векторный способ решения уравнения

ВЕКТОРНЫЙ МЕТОД РЕШЕНИЯ АЛГЕБРАИЧЕСКИХ ЗАДАЧ

Понятие вектора является одним из фундаментальных понятий школьного курса геометрии. Использование векторного метода является «панацеей» при решении многих планиметрических и стереометрических задач. Вектор находит широкое применение в физике. Но на этом использование вектора школьниками, как правило, и заканчивается. Нам показалось интересным найти возможность использовать вектор при решении алгебраических задач.

Скачать:

Вложение Размер
vektornyy_metod_resheniya_algebraicheskih_zadach.doc 286.5 КБ

Предварительный просмотр:

Лудкова Дарина Павловна

Муниципальное бюджетное образовательное учреждение

«Средняя общеобразовательная школа №29»

Курьян Татьяна Казимировна

высшая квалификационная категория

Муниципальное бюджетное образовательное учреждение

«Средняя общеобразовательная школа №29»

пр. Морской д.56 А

ВЕКТОРНЫЙ МЕТОД РЕШЕНИЯ АЛГЕБРАИЧЕСКИХ ЗАДАЧ

Понятие вектора является одним из фундаментальных понятий школьного курса геометрии. Использование векторного метода является «панацеей» при решении многих планиметрических и стереометрических задач. Вектор находит широкое применение в физике. Но на этом использование вектора школьниками, как правило, и заканчивается. Мне показалось интересным найти возможность использовать вектор при решении алгебраических задач.

Изучив соответствующую литературу, я установила, что « эволюция понятия вектора осуществлялась благодаря широкому использованию этого понятия в различных
областях математики, механики, а также в технике».[5.126]. Работы Г. Вес-
селя, Ж.Аргана, К.Ф.Гаусса, В.Гамильтона,
Г. Грассмана, Ф.Мебиуса внесли огромный вклад в развитие векторного исчисления и его приложений .

Однако, возможность использования свойств вектора при решении алгебраических задач, стала для меня настоящим открытием, подтолкнувшим к исследованию все новых и новых задач, решение которых с помощью вектора не только более «изящнее» традиционного способа, но реально даёт возможность сэкономить время на решении, избежать громоздких вычислений.

При решении задач векторным методом необходимы знания о свойствах скалярного произведения двух векторов, а именно: | | · | |. Причем знак равенства достигается тогда и только тогда, когда векторы коллинеарны. Заметим, что = | | · | | , если векторы сонаправленые и = -| | · | |, если векторы противоположно направлены. [1.198] Координаты коллинеарных векторов пропорциональны, т. е. если векторы и — коллинеарны, то . [2.320]

В данной работе я показываю возможность использования свойств векторов при решении уравнений и их систем, при решении и доказательстве неравенств, при исследовании некоторых свойств функций.

Если возвести в квадрат левую и правую части уравнения, произвести преобразования и снова возвести в квадрат, получим уравнение шестой степени, решение которого достаточно трудоемко. Использование векторного метода значительно упрощает решение.

Рассмотрим векторы и . Найдем их скалярное произведение: . Вычислим длины векторов и : ; и произведение их длин.

Таким образом, имеем: = | | · | | , т. е. векторы сонaправлены. Тогда соответственные координаты пропорциональны. Поэтому,

Отсюда и x 3 -3 x 2 + x +1 = 0.

Заметим, что х = 1 – корень полученного уравнения.

Тогда: x 3 -3 x 2 + x +1=( x -1)( x 2 -2 x -1).

Второе уравнение имеет два корня х=1±

Весьма эффективным выглядит использование векторов при решении систем уравнений, которые на первый взгляд традиционным способом совсем не разрешимы.

Заметим, что х≥1 и у≥1.

Рассмотрим векторы и .

, .

Тогда, из второго уравнения исходной системы следует, что , а это означает, что векторы и коллинеарны. Значит, и .

Рассмотрим функцию . Тогда f(x)=f(y). Так как функция монотонно возрастает при х≥1, то х=у .

Первое уравнение исходной системы принимает вид: . Отсюда . Учитывая, что х≥1, имеем

Для решений заданий с параметрами требуется не только высокий уровень математического и, главное, логического мышления того, кто берется за решение таких заданий, но и способность осуществлять исследовательскую деятельность. Однако к некоторым из таких заданий можно приложить все тот же алгоритм векторного метода.

Рассмотрим уравнение, которое требуется решить для всех значений параметра р :

Выполним преобразования в левой и правой частях уравнения,

,

Получили уравнение вида: , где , а . Заметим, что при уравнение принимает вид: и имеет два корня: -1 и 1.

Если , то остальные решения получим, решив уравнение

.

Ранее получено, что 1 является корнем данного уравнения, поэтому решим уравнение .

Итак, корнями уравнения является –р – 1 и р – 1 .

Ответ: если р=0 , то х=±1 ; если р≠0 , то х=-1±р .

Решение тригонометрических уравнений и неравенств – неотъемлемая часть любого экзамена, в том числе и Единого Государственного. Рассмотрим неравенство, которое, по моему мнению, не зная векторный метод решить выпускнику средней школы было бы очень сложно:

Рассмотрим векторы и .

Исходя из неравенства , имеем .

На основании полученного и исходного неравенств получаем равенство

, из которого следует, что векторы и коллинеарны.

Решим систему неравенств:

Решим неравенство (1).

Получаем, , с другой стороны (по условию)

Значит, , следовательно, векторы и коллинеарны, а их координаты пропорциональны, т. е.

Решим неравенство (2):

С другой стороны, , значит, , следовательно, векторы коллинеарны, а их координаты пропорциональны,

Таким образом, что бы найти решение системы неравенств надо решить систему уравнений (1) и (2):

Традиционными для различных олимпиад и конкурсов являются задания по доказательству неравенств. И традиционно эти задания считаются одними из самых сложных. Использование свойств векторов в некоторых случаях может свести самые большие проблемы к минимуму.

Рассмотрим следующее задание.

Доказать, если х 1 +х 2 +…+x n =3, y 1 +y 2 +…+y n =4, z 1 +z 2 +…+z n =5 , то ;

Рассмотрим n векторов таких, что , тогда .

Давно и прочно вошли в экзаменационные работы задания по нахождению наибольшего или наименьшего значения функции. Но далеко не все выпускники школы справляются с этими заданиями. На мой взгляд, это связано с проблемами по нахождению производных некоторых функций. Громоздкие преобразования «отпугивают» не только «троечников», и задачи остаются не решенными. Применение свойств векторов в некоторых случаях может помочь избежать эти трудности.

Найдем наибольшее значение функции .

Функция определена, если Таким образом, .

Рассмотрим векторы и

Заметим, что при x = 0,5 векторы имеют следующие координаты: , а значит векторы – сонаправлены.

, = .

В силу неравенства , ; отсюда ; т.е.

Причем знак равенства достигается тогда, и только тогда, если векторы и коллинеарны, а значит, их координаты пропорциональны. Таким образом,

Решая эту систему, получим x = 2,5.

Таким образом , у наиб = у (0,5)= y (2,5)=2.

Векторный метод показался мне не только универсальным, но вполне доступным для большинства моих сверстников. Мне захотелось поделиться своим открытием со старшеклассниками нашей школы. Никто из опрашиваемых мной учеников 9-11 классов не знал об этом методе. Мне представилась возможность познакомить с результатом моих исследований учеников нашей школы. В свете предстоящих экзаменов векторным методом особенно заинтересовались некоторые одиннадцатиклассники. Вместе с ними мы нашли немало заданий, предлагаемых на ЕГЭ, при решении которых можно применить данный метод.

Свойства векторов, которые нашли широкое распространение в геометрии и в физике, явились плодотворными и в алгебре. Алгоритм применения свойств векторов позволил упростить решение многих сложных заданий, позволил создать особый метод решения различных алгебраических задач.

  1. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия: Учебник для 7 – 9 классов общеобразовательных учреждений. М.: Просвещение, 2008.
  2. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Киселева Л. С., Позняк Э. Г. Геометрия, 10 – 11: Учебник для общеобразовательных учреждений. М.: Просвещение, 2008.
  3. Куланин Е. Д., Федин С. Н. 5000 конкурсных задач по математике. – М.: ООО «Фирма “Издательство АСТ”», 1999.
  4. Олехник С. Н., Потапов М. К., Пасиченко П. И. Нестандартные методы решения уравнений и неравенств. Справочное пособие. – М.: МГУ, 1991.
  5. Преподавание геометрии в 6—8 классах. Сборник статей. В. А. Гусев, Ю. М. Кояягин, Г. Л. Луканкин, Д. И. Хан. Векторы и их применение к решению задач. М.: «Просвещение» 1979.-
  6. Скопец З. А. Геометрические миниатюры. Составитель Г. Д. Глейзер. – М.: Просвещение, 1990.
  7. Супрун В. П. Избранные задачи повышенной сложности по математике. Мн.: Полымя, 1998.
  8. Супрун В. П. Нестандартные методы задач по математике. – М.: Полымя, 2000.

Источник

VI Международная студенческая научная конференция Студенческий научный форум — 2014

РЕШЕНИЕ ЗАДАЧ ВЕКТОРНЫМ МЕТОДОМ

Традиционно одной из самых сложных тем школьного курса геометрии является тема «Применение векторов к решению задач». В то же время понятие вектора является одним из фундаментальных понятий современной математики, а векторный метод является одним из широко употребляемых и современных методов решения задач.

Понятие вектора является одним из фундаментальных понятий современной математики. Термин векторупотребляют в геометрии, по крайней мере, в двух смыслах. С одной стороны вектором называют направленный отрезок, с другой стороны, вектор понимают так, как понимают в физике «векторные величины». Различают соответственно «конкретный вектор» – направленный отрезок и «абстрактный (свободный) вектор» [1,c.3]

Решение задач векторным методом можно разбить поэтапно:

Подготовительный этап.Его цель – изучение основных понятий в теме «Векторы», теорем, опираясь на которые можно решать задачи векторным методом.

Мотивационный этап. Его задача – показать необходимость овладения этим методом и добиться осознания того факта, что на следующих этапах целью деятельности учащихся будет именно усвоение этого метода решения задач.

Ориентировочный этап. Его цель – разъяснить суть метода и выделить его основные компоненты на примере анализа решенной этим методом задачи.

Этап овладения компонентами метода. Цель – используя специально подобранные задачи, формировать отдельные компоненты метода (сначала задачи на формирование одного компонента, потом двух, трёх и т.д.).

Этап формирования метода «в целом». Цель – решение задач, в которых работают все или большинство компонентов метода.

Выделенные этапы позволяют, решаемые векторным методом математические задачи, разбить на две группы: аффинные и метрические.

Аффинные задачи.К ним относятсязадачи, при решении которых не используется операция скалярного произведения векторов.

1) Задачи на доказательство параллельности прямых.

2) Задачи на доказательство принадлежности точек плоскости одной прямой.

3) Задачи на деление отрезка в данном отношении.

Метрические задачи.К ним относятся задачи,при решении которых используется операция скалярного произведения векторов.

1) Задачи на доказательство перпендикулярности прямых.

2) Задачи на нахождение угла между прямыми.

Таким образом, учитывая все выше сказанное, можно выделить следующие цели изучения векторного метода при решении математических задач:

– дать эффективный метод решения различных геометрических задач (как аффинных, так и метрических) и доказательства теорем;

– использовать векторный метод при решении задач с целью форматирования у учащихся выполнять обобщение и конкретизацию;

– формировать у учащихся такие качества мышления, как гибкость (нешаблонность), целенаправленность, рациональность, критичность и др.

Формирование векторного метода решения аффинных геометрических задач должно начинаться еще в девятом (восьмом) классе, на начальном этапе изучении векторов. Для решения задач учащиеся должны владеть следующими умениями, которые и являются компонентами векторного метода:

1) перевод условия задачи на язык векторов, в том числе:

– введение в рассмотрение векторов;

– выбор базисных векторов;

– разложение всех введенных векторов

2) составление системы векторных равенств (или одного равенства).

3) упрощение векторных равенств

4) замена векторных равенств алгебраическими уравнениями и их решения

5) объяснение геометрического смысла полученного решения этой системы (или одного уравнения).

Рассмотрим задачи трёх типов, которые целесообразно решать с помощью векторов.

Первый тип: задачи, связанные с доказательством параллельности прямых и отрезков, прямых и плоскости

Второй тип: задачи, в которых доказывается, что некоторая точка делит отрезок в заданном отношении.

Третий тип: задачи на доказательство принадлежности трех и более точек одной прямой.

Выделение таких типов полезно по следующим соображениям:

1. Эти виды наиболее многочисленны и, в силу простого перевода на векторный язык, могут служить образцами для учащихся.

2. Навык, приобретенный при решении этих задач, можно переносить на более сложные (где данные задачи могут встречаться в виде части задач).

Указанные выше типы задач охватывают довольно большую часть тех задач, которые приходиться решать учащимся. В задачах такого рода традиционные методы решения связаны обычно со значительными трудностями: или с необходимостью тонких дополнительных геометрических построений, или с довольно громоздкими тригонометрическими преобразованиями.

Решение геометрических задач векторным методом позволяет отработать у учащихся навыки перевода условия с геометрического языка на векторный и формировать навыки, необходимые для перевода с векторного языка на геометрический.

Для овладения умением переходить от геометрического языка к векторному и обратно необходимо знать, как то или иное векторное соотношение выражается на геометрическом языке. Например:

а) Равенство AB=k∙CD(k–некоторое число), означает, что прямые АВ и СД параллельны.

б) Равенства AC=mn∙CB и OC=nm+n∙OA+mm+nOB , (m,n –некоторые числа, Q –произвольная точка плоскости) означают, что точка С делит некоторый отрезок АВ в отношении m к n, т.е. AC : CB = m : n. При этом точка Q может быть выбрана так, чтобы последнее равенство доказывалось наиболее просто (это равенство следует из теоремы о делении отрезка в данном отношении).

Кроме этого целесообразно было бы рассмотреть некоторые задачи-теоремы, наиболее широко используемые при решении сложных задач. Они являются опорными при практическом приложении векторного аппарата к решению геометрических задач.

Для примера решим несколько задач.

Задача 1. Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.

Решение. Пусть четырехугольник ABCD – параллелограмм (рис.12). Имеем векторные равенства

Возведем эти равенства в квадрат. Получим:

Сложим эти равенства почленно. Получим:

Так как у параллелограмма противолежащие стороны равны, то это равенство и означает, что сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон, что и требовалось доказать.

Рассмотрим задачу на доказательство деления некоторого отрезка в заданном отношении или на нахождение отношения, в котором точка делит отрезок.

Решение задач этого типа базируется на соотношении: ACCB=mn ; C∈AB; O∉AB; O – произвольная точка (№ 806, [2]).

Задача 2. Доказать, что медианы произвольного треугольника ABC пересекаются в одной точке М такой, что точка М делит каждую медиану в отношении 2:1, считая от вершины треугольника.

Решение. Пусть точка М делит медиану AD треугольника ABC в отношении 2:1.

Тогда по соотношению 2 получаем (m = 2, n = 1)

где О – произвольная точка пространства.

Точка D – середина стороны ВС, поэтому, согласно соотношению 3: OD=12∙OB+OC

Следовательно, OM=13∙OA+ 23∙12∙OB+OC=OA+OB+OC.

Тот же результат получится для любой другой медианы треугольника ABC. Это говорит о том, что М – общая точка всех трех медиан.

Практика решения более сложных задач такого типа показала, что работу нужно вести в следующем направлении: постараться разложить один из векторов (чаще всего конец такого вектора – точка, которая делит данный отрезок в заданном отношении) по двум основным векторам (они неколлинеарны) двумя различными способами. Используя единственность разложения вектора по двум неколлинеарным векторам, установить зависимость между коэффициентами в разложении вектора, что потом дает возможность найти искомое соотношение.

Гусев В. А. Векторы в школьном курсе геометрии. Пособие для учителей / В. А. Гусев, Ю. М. Колягин, Г. Л. Луканкин. – М.: Издательство «Просвещение», , 1976. – 513 с.

Атанасян Л. С. Геометрия. 10-11 классы: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. – 18-е изд. – М. : Издательство «Просвещение», 2009. – 255 с.

Источник

Читайте также:  Сколькими способами можно разместить n предметов по m ящикам
Оцените статью
Разные способы