Усовершенствование способов очистки во

Современные способы и методы очистки воды

Системы водочистки являются неотъемлемой частью современной жизни и практически все потребители (от частных лиц до предприятий) нуждаются в качественной и правильно подготовленной воде.

Реализованные в них методы и технологии бывают разными, с особенностями каждого варианта стоит познакомиться заранее.

Какие существуют по принципу действия?

В зависимости от принципа действия выделяют такие способы очистки воды как:

  • Физические (грубая механическая чистка).
  • Химические (смешение воды с реагентами).
  • Физико-химические (сложные комплексные мероприятия).
  • Биологические (воздействие живых микроорганизмов).

Физические методы

Данные методы предназначены для очищения воды от твердых крупнофракционных частиц (чаще всего – нерастворимых).

Они успешно задействуются на этапах первичной и грубой очистки и в разы реже – при глубоких и тонких воздействиях.

Среди главных физических методов выделяют:

  • Процеживание – очищение жидкостей от крупнофракционных посторонних включений при проходе через ячеистые прослойки (сетки, решетки, полипропиленовую мешковину). К преимуществам этого метода относят простоту и эффективное улавливание крупного мусора, к минусам – потребность в частой промывке фильтрующих элементов, пропускание патогенных микроорганизмов, солей и любых мелких нежелательных примесей.
  • Отстаивание – осаждение посторонних фракций под действием собственного веса вниз с последующим отбором более чистой воды. Этот метод используются как на предварительных, так и на промежуточных этапах водоподготовки, его производительность существенно ограничена временем и объемами отстойников.
  • Фильтрование – схожий с процеживанием, но более совершенный метод, позволяющий очищать воду от ненужных примесей с разным размером фракций (минимальный порог – до микронов) при прохождении через пористый фильтрующий слой. Метод активно используется в быту и на производстве, из всех физических видов он считается самым эффективным.
  • УФ-дезинфекция – обработка предварительно очищенной от крупных фракций воды УФ-лучами с длиной волн в пределах 200-400 нм с целью обеззараживания. Состав и физические свойства жидкости этот метод не меняет.

Химические

Эти методы ценятся за эффективность и высокую производительность.

Исходя из вида протекающих реакций выделяют такие химические методы водоочистки как:

  1. Нейтрализация – выравнивание PH-баланса воды за счет добавления особых реагентов (аммиачной воды, гидроксидов калия или натрия, кальцированной соды) или ее пропускании через кислые газы. Чаще всего к этому методу обращаются при регенерации промышленных стоков, забираемая из скважин или водоемов вода изначально имеет нейтральную среду и корректировке баланса не нуждается.
  2. Окисление – обезвреживание токсичных водных растворов и хлорирование воды при добавлении активных окислителей. Несмотря на высокую эффективность (микроорганизмы убиваются быстро и надолго) метод считается опасным для здоровья человека.
  3. Очистку восстановлением. Данный метод выбирается при высокой доли легко восстанавливаемых веществ в исходной воде или стоках. При его выборе из воды удаляются ряд простых и переходных металлов и минералов (хрома, ртути или мышьяка) и их соединений.

Физико-химические

Данная группа представлена комплексными методами с широким спектром применения, задействуемыми на любых этапах очистки и водоподготовки.

Очистка воды при их выборе осуществляется самыми разными способами, включая воздействие растворенных газов, тонкодисперсных сред и изменение ионного состояния молекул.

Особенности наиболее востребованных физико-химических методов изложены в таблице:

Наименование Кратное описание метода Оптимальное применение/ возможные ограничения
Флотация Отделение и подъем твердых гидрофобных частиц при пропускании сквозь толщу воды пузырьков воздуха или других инертных газов. Формируемая на поверхности пена или прослойка легко удаляется механическими способами. Очистка жидкостей от нефтепродуктов и масел, удаление твердых примесей при низкой эффективности других методов.
Сорбация Избирательная фильтрация ненужных примесей при поверхностном или объемном прохождении воды через материалы с пористой структурой (силикагели, уголь и их аналоги). Используемые сорбенты могут быть восстанавливаемыми или утилизируемыми после потери фильтрационных свойств. Удаление ПАВ, пестицидов, фенолов, процессы доочистки.
Экстракция Заливка в очищаемую воду мало- или несмешиваемых веществ, растворяющих грязь, с последующим активным перемешиванием, отстаиванием и разделением разнофазных сред. Удаление органический соединений, включая фенолы, регенерация стоков.
Ионообмен Обмен ионами между очищаемой водой и природными (цеолиты, сульфоугли) или искусственными (синтетические смолы) ионитами. Умягчение воды/ метод не предназначен для бытовой очистки больших объемов сильнозагрязненной воды.
Электродиализ Очищаемая вода последовательно проходит камеры с ионоселективными мембранами и электродами постоянного тока. В первых камерах вода избирательно обессоливается, в крайних – накапливает концентрат солей с последующим разделением. Обессоливание и удаление нежелательных ионов. Регенерация стоков на химических предприятиях.
Обратный осмос Вода пропускается через мембраны с микроскопическими ячейками под избыточным гидростатическим давлением с последующей утилизацией выделенного загрязненного раствора. Обессоливание, отделение нежелательных микроорганизмов, растворенных газов и коллоидных веществ.
Термические методы Суть данных метолов состоит в получении дистиллята или максимально очищенной воды после ее выпаривания, вымораживания или термического окисления (распыление и пропускание через высокотемпературные продукты сгорания). Нейтрализация или удаление токсичных или слабо разлагающихся примесей.
Читайте также:  Как сделать жизнь ярче способы

Биологические

Эти методы преимущественно задействуются при очищении стоковых вод и базируются на использовании живых организмов.

К последним относят как бактерии (окисляющие и разрушающие токсичные и азотосодержащие соединения, поглощающие фосфаты), простейшие грибы и водоросли, так и многоклеточные (черви, насекомые).

Водоочистка биологическими методами проводится в:

  • Естественных или искусственных водоемах, очищающих сравнительно небольшие объемы воды со средней степенью загрязненности при минимуме усилий и трат.
  • Биофильтрах – специальных сооружениях с фильтрующей прослойкой из аэробных микроорганизмов с естественным или принудительным воздухообменом.
  • Аэротенках – сложных автоматизированных комплексах с принудительной аэрацией.
  • Метатенках – устройствах анаэробного брожения для переработки концентрированных стоковых осадков.

Современные технологии очищения

В современных системах водоподготовки приведенные методы используются в комплексе.

Ярким примером служат многоступенчатые бытовые фильтры с механическими предфильтрами, ионообменными или сорбционными картриджами и обратноосмотическими мембранами. Такие установки обеспечивают полноценную подготовку питьевой воды вне зависимости от ее исходных параметров.

К инновационным тенденциям в сфере водоподготовки относят:

  • Отказ от метода хлорирования в пользу озонирования (окисление жидким кислородом) и/или УФ-обработки.
  • Использование ультрафильтров и нанофильтрационных мембран с пониженной селективностью.
  • Вывод взвесей и растворенных органических примесей с помощью электроприборов фотокатализации.

При всех своих преимуществах такие технологии нельзя назвать бюджетными, соответствующие фильтры, мембраны и другие расходные материалы обходятся дорого и в быту не окупаются.

Проверенные новые методы (ионообмен, обратный осмос, многоступенчатое исполнение фильтра), наоборот, становятся более доступными для частных лиц.

Фильтрация на предприятиях

Взаимосвязь между областью использования и требуемым типом системы водоподготовки отражена в таблице:

Отрасль производства Требуемые функции основной линии подготовки
Металлургия Обессоливание
Пищевая промышленность Обеспечение ионного обмена, обеззараживание, умягчение
Добыча и переработка нефти и газа Исключение посторонних примесей, обезжелезивание, обратный осмос
Энерго- и тепло- и водоснабжение Обессоливание, УФ-фильтрация, хлорирование или озонирование
Фармацевтика Обратный осмос, дистилляция

В целях экономии средств приведенные методы реализуются в комплексе с механическим фильтрованием.

Отдельные требования выдвигаются к системам переработки стоков предприятий химической или металлургической отрасли, отбираемый концентрат может быть ценным или нуждаться в обязательной утилизации.

Переработка стоков

Полный цикл переработки стоков на производстве и в общественных линиях включает:

  1. Подачу стоков на усреднитель при необходимости разбавления.
  2. Отстаивание механическим способом.
  3. Основную чистку (активное использование живых организмов).
  4. Глубокую чистку (удаление всех посторонних примесей с помощью обратноосмотических мембран или тонких фильтров).
  5. Обеззараживание (УФ-обработка, хлорирование, озонирование).

Выделяемый на 2, 3 и 4 стадиях осадок в обязательном порядке регенерируется или утилизируется. Эти процессы происходят в метатенках, отжимных или сушильных аппаратах.

К дорогостоящим физико-химическим методам прибегают лишь при повышенных требованиях к чистоте состава или при низкой результативности других способов.

Бытовое очищение стоков требует меньше усилий. Владельцы индивидуальных домов, но подключенных к канализационным сетям используют септики (как с днищем, так и без), сорбенты или коагулянты.

Более подробно об очистке сточных вод читайте здесь.

Удаление тяжелых металлов

Потребность в принятии дополнительных мер возникает при отклонении ПДК тяжелых металлов в воде от санитарно-гигиенически норм. Чаще всего такая ситуация наблюдается при близости скважины к септику или попадании этих веществ извне (осадки, протекание зараженных грунтовых вод, контакт с металлически фитингами).

Для удаления этих веществ в быту и промышленности используются следующие химические и физико-химические методы:

Тип металла Допустимая концентрация в воде, не более мг/л Рекомендуемый метод очистки воды
Марганец и железо 0,1 Ионообмен, аэрация с последующей подачей в засыпной фильтр с каталитическим зарядом, окисление гипохлоритом натрия, дозированная подача сильнодействующих окислителей
Сероводород 0,01, вещество очень токсично Окисление, выветривание, насыщение кислородом
Свинец 0,03 Обратный осмос, окисление и восстановление
Ртуть 0,001 Обратный осмос, а также окисление и восстановление
Хром 0,05 Окисление, обратный осмос и восстановление
Никель 0,1 Окисление и восстановление
Читайте также:  Способы исполнения интеллектуальных прав

Системы обратного осмоса при несомненной эффективности редко используются из-за дороговизны и ускоренного использования ресурсов мембран.

Заключение

Приведенные методы непрерывно совершенствуются и дополняют друг друга, при выборе конкретного варианта стоит ознакомиться с их особенностями и возможными ограничениями заранее.

Ни один из методов, который существует, нельзя назвать универсальным, при правильной организации водоподготовки они задействуются в комплексе.

Вне зависимости от выбранного метода к потребителю или на промышленные объекты подается вода с контролируемыми параметрами.

Источник

Живая вода: пять прогрессивных технологий очистки

По оценкам ООН, к 2050 году на Земле будут жить 9,8 млрд человек. Изменение климата, а также развитие сельского хозяйства и промышленности для удовлетворения потребностей постоянно растущего населения приведут к серьезному сокращению доступных водных ресурсов.

Согласно исследовательскому проекту WaterAid, 60% населения планеты уже сейчас живет в районах, где водоснабжение не может или скоро прекратит удовлетворять спрос. Водный кризис наиболее болезненно проявляется на Ближнем Востоке, в Центральной Азии и Северной Африке.

Россия в рамках прогнозного горизонта 2040 года находится в зоне низко-среднего риска.

Главные тренды рынка

Как развитые, так и развивающиеся страны сталкиваются с одной общей проблемой — ростом объемов промышленных и городских сточных вод. Это, в свою очередь, побуждает разработчиков из разных стран к поиску новых и все более совершенных технологий очистки воды.

Традиционные методы очистки включают использование адсорбентов, обратного осмоса, ионного обмена и электростатического осаждения. Их недостатки — высокая стоимость, плохая возможность повторного использования и низкая эффективность. Несмотря на прогресс, достигнутый в разработке новых технологий за последнее десятилетие, их использование ограничено в основном из-за свойств материалов и стоимости.

Согласно аналитическому агентству Mordor Intelligence, в 2020 году объем мирового рынка технологий очистки воды оценивался на уровне $50,5 млрд. До 2026-го рынок ежегодно будет расти примерно на 7% из-за быстро сокращающихся ресурсов пресной воды во всем мире. Спрос растет также со стороны разработчиков месторождений сланцевых углеводородов, производителей биотоплива и др.

Негативно повлияла на рынок пандемия COVID-19. Но она же привела к появлению новой технологии, которая позволяет обнаружить коронавирус в сточных водах. Метод позволяет измерить присутствие РНК-генетического материала SARS-CoV-2 (рибонуклеиновая кислота) в человеческих фекалиях в системе сбора сточных вод. Исследования в Нидерландах показали связь между объемом вирусного материала в сточных водах и количеством случаев заражения в данном районе и помогают отслеживать эпидемиологическую ситуацию и эволюцию вирусов. Эта методика была также протестирована в 2020 году в более чем 40 штатах Америки, причем в университете Аризоны помогла предотвратить вспышку коронавируса, где выявили двух человек с бессимптомным течением болезни.

Перечислим пять наиболее инновационных, по нашему мнению, технологий очистки воды.

1. Мембранное разделение

Это давний и популярный метод очистки воды от примесей и загрязнителей. Есть много технологий, которые работают как фильтр: пропускают воду через пленку с микроскопическими отверстиями. Вода проходит, а загрязняющие частицы застревают на мембране.

Методы современного мембранного разделения, такие как обратный осмос (удаляет частицы даже размером 0,001-0,0001 мкм — соли жесткости, сульфаты, нитраты, ионы натрия, красители и т.д.), могут очистить воду от 99,5% примесей. Но для этого размер пор должен быть менее микрона. Основной недостаток технологии — высокая стоимость обслуживания (мембраны часто забиваются).

2. Облучение

Как следует из названия, этот процесс основан на воздействии радиации на сточные воды, чтобы уничтожить органические загрязнители. Источники излучения — от гамма-лучей до ультрафиолетового света.

Облучение обычно используют для обеззараживания, но некоторые методы, например, ионизирующее облучение, в сочетании с добавлением озона или перекиси водорода улучшают эффективность разложения органических примесей, включая пестициды и фенолы.

Современные системы УФ-обработки предлагают применять светодиодные лампы. Сейчас такие лампы начинают активно внедрять в коммунальном секторе, а также используются NASA в космических разработках агентства.

Второй способ — это гидрооптические технологии. Они позволяют использовать несколько раз энергию фотонов, так как ультрафиолетовые лучи отражаются от стенок кварцевой камеры. Это повышает эффективность дозы УФ-облучения для уничтожения сложных вирусов, например, коронавируса или аденовируса.

Артур Душенко, главный инженер VODACO, Россия:

«Вирусы и бактерии, поступающие в водоемы со сточными водами, в дальнейшем могут попадать в системы коммунального водозабора на том же водоеме. Современные системы реагентной дезинфекции с использованием гипохлорита натрия или жидкого хлора не способны обезвредить все бактерии, так как многие из них, такие как Cryptosporidium или Giardia (криптоспоридии или лямблии. — РБК Тренды), устойчивы к воздействию хлора так же, как и сложные формы вирусов — аденовирус и коронавирус (как яркий пример — SARS-CoV-2).

Читайте также:  Светотехнические способы оценки освещенности

Системы УФ-дезинфекции на базе технологии HOD UV обеспечивают дозу воздействия на данные микроорганизмы в 120 mJ/cm2 и выше — это необходимое условие для обезвреживания вируса, разрушения цепочки РНК и угнетения способности к восстановлению. В России стандарт воздействия ограничен на законодательном уровне — 30 mJ/cm2».

3. Очистка наночастицами

Люди давно используют такие вещества, как древесный уголь, для очистки воды путем адсорбции. При очистке наночастицами используется та же механика, но с частицами в наномасштабе. Различные типы наноматериалов — металлические наночастицы, наносорбенты, биоактивные наночастицы, нанофильтрационные (NF) мембраны, углеродные нанотрубки (УНТ), цеолиты и глина — оказались эффективными материалами для очистки сточных вод. Их использование устраняет пестициды и тяжелые металлы в воде. Углеродные нанотрубки также рассматривают как прорывную технологию для опреснения морской воды до стадии питьевой. Основной недостаток технологии — стоимость.

4. Биоаугментация

Органический способ очистки представляет собой добавление в воду смеси микроорганизмов, которая разрушает и удаляет загрязнения. Эти микроорганизмы включают ферменты и безопасные бактерии, которые естественным образом разлагают загрязняющие вещества, такие как масла или углеродные продукты. Но биоаугментация может влиять на экосистему микрофлоры и, как следствие, нарушать процесс очистки. Поэтому эту технологию пока нельзя использовать для получения питьевой воды.

5. Мембранная биоаугментация

Мембранные биореакторы (MBR) — гибридная технология, которая включает мембранное разделение и биоаугментацию. Сточные воды после биологической очистки при помощи активного ила подают в емкость, называемую биореактором. В этой емкости располагаются мембраны, которые разделяют сточные воды на два потока — активный ил, используемый повторно для биологической очистки, и чистую воду.

На рынке представлены два основных типа MBR — это системы с вакуумным (или гравитационным) потоком и системы под давлением. Вакуумные системы погружаются в воду и имеют мембраны, установленные либо внутри биореакторов, либо в последующем резервуаре. Второй тип MBR, где поток управляется давлением, представляет собой внутритрубные картриджные системы, расположенные вне биореактора.

Преимущество мембранной биоаугментации — небольшая площадь для биологической очистки. MBR-реакторы увеличивают мощность очистных сооружений без увеличения площади конструкций.

Ольга Рублевская, директор Департамента анализа и технологического развития систем водоснабжения и водоотведения ГУП «Водоканал Санкт-Петербурга»:

«Нева — это основной источник водоснабжения в Санкт-Петербурге. Благодаря программе прекращения сброса сточных вод без очистки в Неву и Финский залив в 2021 году уровень очистки достиг 99,5%. К 2030 году весь объем стоков будет перерабатываться на очистных сооружениях. Сейчас наша технологическая схема очистных сооружений состоит из механической, химической и биологической очистки.

  • Механическая очистка включает решетки, песколовки, отстойники, в том числе прессование и отмыв отбросов (дополнительное поступление органических веществ в стоки) и преферментацию сырого осадка на стадии отстаивания (увеличение летучих жирных кислот).
  • Биологическая очистка основана на технологических схемах UCT (технология Кейптаунского университета) и JHB (технология Йоханнесбургского университета).
  • Химическая обработка применяется для удаления фосфатов. Используемый реагент — сульфат алюминия.

Так как в Санкт-Петербурге нет дефицита воды, то в городе нет ни вторичного использования очищенной воды, ни планов по применению таких технологий».

Необходимость через отвращение

Повторное использование сточных вод для орошения и других непитьевых целей стало обычным явлением и существует уже не одно десятилетие. Так, например, в Израиле, почти 90% сточных вод страны используется повторно в сельском хозяйстве.

Для доочистки сточной воды до состояния питьевой необходима надежная технологическая схема, которая включает как минимум пять стадий. Повторно используют очищенные сточные воды питьевого качества Австралия, Сингапур, Намибия, Южная Африка, Кувейт, Бельгия, Великобритания и США (штаты Калифорния и Техас). В этих странах очищенной водой пополняют подземные или поверхностные водные источники (плотины).

Речная вода, используемая в различных городах для производства питьевой воды, содержит в себе большие объемы сточных вод. Переработанная вода безопасна для питья, но некоторые люди не могут преодолеть чувство отвращения. Периодически во всем мире проходят акции по преодолению психологических барьеров. Так, основатель Microsoft Билл Гейтс выпил стакан жидкости, которая была переработана из человеческих фекальных масс в питьевую воду по технологии Omniprocessor Фонда Билла и Мелинды Гейтс. А французская компания Veolia запустила в Чехии совместный проект с пивоварней Čížová, которая из переработанных стоков сварила пиво.

Источник

Оцените статью
Разные способы