Ускорение при векторном координатном естественном способах

1.1.3. Ускорение точки при векторном и координатном способах задания движения

Ускорение точкихарактеризует быстроту изменения её вектора скорости. Пусть точка, движущаяся относительно неподвижной системы отсчета, в момент временизанимает положение, а в момент– положение; скорости точки в этих положениях представлены векторамии(рис. 1.1.6). Перенесем начало векторав точкуи построим параллелограмм, в котором диагональю будет, а одной из сторон – вектор. Другая сторона будет изображать вектор,

т. е. приращение вектора за время. Векторная величинаназывается средним ускорением точки за время, векторнаправлен так же, как и вектор.

Ускорением точки в данный момент времени называется вектор , равный пределу, к которому стремитсяпри.

. (1.1.19)

Учитывая формулу (1.1.8), можно записать

. (1.1.20)

Ускорение точки в данный момент времени равно первой производной по времени от вектора скорости точки или второй производной по времени от радиус-вектора точки.

Ускорение точки при координатном способе задания движения

Пусть движение точки задается уравнениями (1.1.2). Формулу (1.1.20) с учетом зависимости (1.1.11) можно представить в следующем виде: , (1.1.21)

где — (1.1.22)

проекции ускорения точки на неподвижные оси декартовых координат.

Следовательно, проекции ускорения точки на неподвижные оси декартовых координат равны первым производным по времени от соответствующих проекций скоростей или вторым производным по времени от соответствующих координат.

Модуль ускорения точки равен

, (1.1.23)

а направление вектора точки определяется направляющими косинусами:

. (1.1.24)

1.1.4. Ускорение точки при естественном способе задания движения

При естественном способе задания движения с точкой М связывают сис-тему отсчёта, представляющую собой осиестественного трёхгранника(рис. 1.1.7).П – соприкасающаяся плоскость к кривой в точкеМ . Плоскость N, проведенная через точкуперпендикулярно касательной в этой точке называетсянормальной плоскостью. Любая прямая, проходящая через точкуи лежащая в этой плоскости является нормалью кривой в точке. Нормаль, расположенная в соприкасающейся плоскости, называетсяглав-ной нормалью. Положительное направление главной нормали определяется ортом главной нормали, направленным в сторону вогнутости кривой. Нормаль, перпендикулярная соприкасающейся плоскости, называетсябинормальюк кривой в точкеМ. Положительное направление бинормали определяется ее ортом, причем, т.е. ортыориентированы друг относительно друга так же, как ортыправой прямоугольной декартовой системы координат. Плоскость, проходящая через касательную и бинормаль, называетсяспрямляющей.

Читайте также:  Как решать примеры способом группировки

Три взаимно перпендикулярные оси: касательная, главная нормальи бинормальобразуютестественные осикривойв данной точке. Перемещаясь по кривой вместе с точкой, естественные оси, оставаясь ортогональными, изменяют свою ориентацию в пространстве относительно неподвижной системы отсчета.

Разложим вектор ускорения точки на естественные оси.

Дифференцируя выражение (1.1.17) скорости точки по времени, получаем

. (1.1.25)

Здесь первое слагаемое – составляющая вектора ускорения по касатель-ной к траектории – . Второй множитель во втором слагаемом пред-ставим в виде, где модуль— кривизна кривой в данной точкеМ. Векторперпендикулярен ортуи расположен в соприка-сающейся плоскости, его направление совпадает с направлением ортаглав-ной нормали.

Радиусом кривизны кривой в данной точке называется величина .

Следовательно, второе слагаемое в формуле (1.1.25) примет вид и представляет собою составляющую ускорения точки по главной нормали.

Таким образом, ускорение точки при естественном способе задания её движения раскладывается на две составляющие: — ускорение , направленное по касательной к траектории и называемоекасательнымилитангенциаль-ными ускорение, направленное по главной нормали к центру кривизны траектории и называемоенормальнымили центростремительным; ,.

В итоге, формулу (1.1.25) можно представить в виде

. (1.1.26)

Скалярные множители в (1.1.25) являются проекциями ускорения точки на касательную и главную нормаль:

, (1.1.27)

. (1.1.28)

Модуль касательного ускорения равен . (1.1.29)

Из зависимости (1.1.25) видно, что вектор ускорения точки лежит в соприкасающейся плоскости и на бинормаль не проецируется, поэтому.

Касательное ускорение характеризует быстроту изменения вектораскорости по модулюи направлено в сторону скорости при ускоренном движении точки (рис. 1.1.8,а) и в противоположную сторону — при её замедленном движении (рис. 1.1.8,б).

Нормальное ускорение характеризует быстроту изменения вектораскорости по направлениюи направлено всегда в сторону вогнутости траектории. Придвижение точки будет равномерным; приточка движется прямолинейно.

Читайте также:  Способы ведения бухучета избранные организацией при формировании учетной политики применяются

Поскольку векторы ивзаимно перпендикулярны, то модуль ускорения равен:

. (1.1.30)

Вопросы для самопроверки по теме 1.1

1. Что является предметом теоретической механики?

2. Что называется механическим движением материальных тел?

3. В чем состоит метод абстракции в механике?

4. Какими способами задается движение точки?

5. Установите связь между векторным и координатным способами задания движения точки.

6. Как определяют траекторию движения точки, если заданы её уравне-ния движения в проекциях на декартовые оси?

7. Дайте определение скорости точки при векторном и координатном способах задания движения.

8. Дайте определение скорости точки при естественном способе задания её движения.

9. Дайте определение ускорения точки при задании её движения векторным и координатным способами.

10. Перечислите естественные оси, их орты и названия координатных плоскостей.

11. Чем орты естественных осей отличаются от ортов осей неподвижной декартовой системы отсчета?

12. Что характеризует касательное ускорение?

13. Что характеризует нормальное ускорение?

14. Как движется точка при ?

15. Как движется точка при ?

16. Какое движение точки называется равноускоренным, равнозамедлен-ным?

17. Назовите кривые, имеющие постоянный радиус кривизны.

18. Решите самостоятельно задачи 12.4(12.5), 12.9(12.10), 12.14(12.15), 12.22(12.23), 12.25(12.26) из [3].

Источник

Оцените статью
Разные способы