Урок 9 класс решение систем уравнений графическим способом

Открытый урок по алгебре в 9 классе «Графический способ решения систем уравнений»
методическая разработка по алгебре (9 класс) на тему

«Графический способ решения систем уравнений»

Скачать:

Вложение Размер
konspekt_otkrytogo_uroka_v_9_klasse.docx 27.26 КБ
graficheskiy_sposob_resheniya_sistem_uravneniy_na_otkrytyy_urok.pptx 808.77 КБ

Предварительный просмотр:

«Графический способ решения систем уравнений»

Тип урока: Урок изучения нового материала

Образовательные: обобщить графический способ решения систем уравнений первой степени на системы уравнений с двумя переменными второй степени, закрепить навыки построения графиков функций; научить анализировать данные для нахождения решения системы уравнений по графику, формировать потребность приобретения новых знаний

Развивающие : Р азвитие творческой деятельности и познавательного интереса учащихся, развитие критического мышления; культуры графического построения

Воспитательные : воспитывать уважение друг к другу, взаимопонимание, уверенность в себе , работоспособность.

Оборудование: Компьютер, проектор, компьютерная презентация.

3. Актуализация знаний.

4.Конструирование новых знаний

6. Первичное осмысление и применение изученного способа решения систем уравнений.

7. Подведение итогов. (Рефлексия).

8. Выставление оценок. Д/З

Здравствуйте, ребята! Садитесь.

Мы урок наш начинаем,

Всем удачи пожелаем.

Вы друг друга поддержите

Постарайтесь, не ленитесь.

И на 5 лишь все трудитесь.

2. Мотивация урока.

Математика много дает для умственного развития человека – заставляет думать, соображать, искать простые и красивые решения, помогает развивать логическое мышление, умение правильно и последовательно рассуждать, тренирует память, внимание, закаляет характер. Надеюсь, что сегодня вы все будете работать с большим желанием узнать, что-то новое и в тоже время закрепить свои прошлые знания. Ведь как гласит народная мудрость: «Была бы охота – заладится всякая работа».

Сегодня на уроке мы рассмотрим один из способов решения систем уравнений, разработаем алгоритм решения.

При этом вы должны быть внимательными, аккуратными, логически мыслить, анализировать, делать выводы.

Николай Егорович Жуковский сказал: «В математике есть своя красота, как в живописи и поэзии».

Сегодня на уроке мы с вами в этом постараемся убедиться.

Разминка для ума.

Графики уравнений с 2 переменными весьма разнообразны. (Слайд 5)

Вы знаете, что иллюстрацией уравнений служат их графики на координатной плоскости. Установите соответствие (Слайд 7)

4. Конструирование новых знаний.

В 7 классе мы рассматривали системы уравнений первой степени с двумя переменными. Теперь займемся решением систем, составленных из двух уравнений второй степени или из одного уравнения первой степени, а другого второй степени.

Чтобы хорошо с этим разобраться, вспомним, как мы решали системы линейных уравнений.

1.Что называется решением системы уравнений?

( Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство)

2.Решить систему уравнений — это значит найти все её решения или установить, что их нет.

Запишем тему урока

Дети в тетрадях пишут дату, тему урока «Графический способ решения систем уравнений»,

Проговорить цель урока. Слайд№4

Задание

слайд № 11 .(учащиеся еще раз его проговаривают)

1.Выразить у через х в каждом уравнении.

2.Построить в одной системе координат график каждого уравнения.

3.Определить координаты точки пересечения графиков.

4.Записать ответ: х=…; у=… , или (х; у)

Но, к сожалению, графический способ не всегда обеспечивает высокую точность результата, не всегда решения являются точными. В основном этот метод применяется для:

* нахождения приближенных решений;

* с помощью этого метода легко выяснить, сколько решений может иметь система уравнений

5. Физкультминутка. Ученики встают с места, учитель называет формулы различных функций, ученики в воздухе руками рисуют соответствующие им графики у=х 2 , у=2х+5,у=3\х, у=-х 2 ,у=х 3, .у=-5\х.

6.Закрепление изученного материала.

Минутка ОГЭ : — решить систему уравнений графическим способом самостоятельно (из сборника заданий для подготовки к ГИА )

7.Итог урока — рефлексия. слайд№15

Сегодня на уроке

На уроке было легко…

На уроке было трудно…

Мне нужно еще поработать над…

8.Задание на дом:

Комментируются и выставляются оценки за урок ученикам, работавшим у доски, а также наиболее отличившимся на уроке.

— Наш урок подошел к концу. Благодарю всех за работу и желаю успехов при выполнении домашнего задания. Урок окончен. До свидания.

Предварительный просмотр:

Подписи к слайдам:

Муниципальное бюджетное общеобразовательное учреждение «Редкодубская средняя общеобразовательная школа» Ардатовского района Республики Мордовия Учитель математики Козырева Людмила Анатольевна Урок для учащихся 9 класса по теме «Графический способ решения систем уравнений» Учебник Ю.Н. Макарычев под редакцией С.А. Теляковского

Николай Егорович Жуковский сказал: «В математике есть своя красота, как в живописи и поэзии». ( 5 [17] января 1847 , с. Орехово (ныне Владимирской области) — 17 марта 1921 , Москва ) — русский механик , создатель аэродинамики и аэромеханики как наук.

Графический способ решения систем уравнений

Цель урока: Формирование умений и навыков решения систем уравнений графическим способом

y x 0 0 y x b y x 0 y x 0 y x 0 прямая гипербола парабола окружность кубическая парабола Разминка для ума

0 х у Вы, конечно, помните, что графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции. у = f( х) Вы уже знакомы с некоторыми важными видами функций

Установите соответствие окружность гипербола прямая парабола Проверить кубическая парабола

Решить систему значит найти все её решения или доказать, что их нет. Решение системы пара значений переменных, обращающая каждое уравнение системы уравнений с двумя переменными в верное равенство.

Является ли решением системы пара чисел ?

0 х у 1 1 Задание 1 Решаем систему: Преобразуем уравнения системы: Строим в одной системе координат графики уравнений системы А теперь самостоятельно определите решения системы.

Давайте сделаем из рассмотренного примера выводы. Помните о двух вещах! Если точек пересечения графиков нет, то система решений не имеет; Координаты точек пересечения определяются приблизительно, поэтому и решения могут получиться приблизительными; Чтобы проверить точность полученных решений, их нужно подставить в уравнения системы! Чтобы решить систему двух уравнений с двумя неизвестными, нужно : Построить в одной системе координат графики уравнений, входящих в систему; Определить координаты всех точек пересечений графиков (если они есть); Координаты этих точек и будут решениями системы.

0 х у 1 1 Задание 2 Решаем систему: Преобразуем уравнения системы: Строим в одной системе координат графики уравнений системы А теперь самостоятельно определите решения системы.

№421, стр.111 учебника Минутка ОГЭ : — решить систему уравнений графическим способом самостоятельно (из сборника заданий для подготовки к ГИА )

«Считай несчастным тот день или тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию» Я. А. Каменский.

Сегодня на уроке Я учился (лась)… Я смог (ла)… На уроке было легко… На уроке было трудно… Мне нужно еще поработать над…

Домашнее задание Уровень А № 419; Уровень В № 526 ;

По теме: методические разработки, презентации и конспекты

Тип урока. Урок обобщения и систематизации знаний по темам: Графический способ решения систем уравнений в системе ЭТ (Microsoft Excel). Оборудование и материалы: 12 ПК (установлена операцио.

Данное пособие составлено как методическая разработка для проведения уроков по алгебре в 9 классе по теме «Графический способ решения систем уравнений» (в тематическом планировании — 2 часа).Пособие с.

Урок с презентацией по теме: «Графический способ решения систем уравнений». 9 класс.

На уроке повторяются графики различных уравнений и рассматривается графический метод решения систем уравнений с двумя переменными.

Первый урок по теме «Алгебраический способ решения задач» к учебнику Дорофеева Г. В.

открытый урок по алгебре 8 класс на тему «Решение систем неравенств с одной переменной» Урок полностью соответствует ФГОС+ презентация к уроку.

1. Разработка технологической карты урока алгебры в 9 классе по теме: «Решение систем уравнений второй степени с двумя переменными. Графический способ решения систем уравнений.2. Технологическая .

Источник

«Графический способ решения систем уравнений»
план-конспект урока по алгебре (9 класс) на тему

урок изучения нового материала. План урока.

Скачать:

Вложение Размер
graficheskiy_sposob_resheniya_sistem_uravneniy.docx 50.2 КБ

Предварительный просмотр:

«Графический способ решения систем уравнений»

Тип урока : Урок изучения нового материала

Образовательные : обобщить графический способ решения систем уравнений первой степени на системы уравнений с двумя переменными второй степени, закрепить навыки построения графиков функций; научить анализировать данные для нахождения решения системы уравнений по графику, формировать потребность приобретения новых знаний

Развивающие : Р азвитие творческой деятельности и познавательного интереса учащихся, развитие критического мышления; культуры графического построения

Воспитательные : воспитывать уважение друг к другу, взаимопонимание, уверенность в себе, работоспособность.

Оборудование: Компьютер, проектор, компьютерная презентация, рабочие карты урока.

3. Актуализация знаний.

4.Конструирование новых знаний

6. Первичное осмысление и применение изученного способа решения систем уравнений.

7. . Подведение итогов. (Рефлексия).

8. Выставление оценок. Д/З

1. Организационный момент.

Здравствуйте, ребята! Садитесь.

Мы урок наш начинаем,

Всем удачи пожелаем.

Вы друг друга поддержите

Постарайтесь, не ленитесь.

И на 5 лишь все трудитесь.

2. Мотивация урока.

Математика много дает для умственного развития человека – заставляет думать, соображать, искать простые и красивые решения, помогает развивать логическое мышление, умение правильно и последовательно рассуждать, тренирует память, внимание, закаляет характер. Надеюсь, что сегодня вы все будете работать с большим желанием узнать, что-то новое и в тоже время закрепить свои прошлые знания. Ведь как гласит народная мудрость: «Была бы охота – заладится всякая работа».

Сегодня на уроке мы рассмотрим один из способов решения систем уравнений, разработаем алгоритм решения.

При этом вы должны быть внимательными, аккуратными, логически мыслить, анализировать, делать выводы.

Николай Егоровия Жуковский сказал: «В математике есть своя красота, как в живописи и поэзии».

Сегодня на уроке мы с вами в этом постараемся убедиться.

Итак, мы должны настроиться на урок…

Перед вами лежит листок бум аги. Обведите на нем свою руку. Продолжите предложения, характеризующее ваше эмоциональное состояние в данный момент:

Мизинец- мне сейчас…

Безымянный- я хочу…

Указательный- чего я жду от урока…

Большой- мне интересно….

Внимание, начинаем наше путешествие в повторение .

Повторить функции и их графики .

Тестирование (на листах выполнить тест и задание)

1. Какая функция является линейной

1) у=х 2 +3; 2) у= 2х + 3; 3) у= 3/х; 4) у= -х 3

2.Выразить у через х

1)у=4х 2 +3; 2) у=2х 2 +3; 3)у=2х 2 +1,5; 4) у= -2 х 2 +1,5

3.Найти координаты центра окружности

4.Найти нули функции у=х 2 -3х

5.Напишите уравнение окружности с центром в точке К(2;-5)

  1. (х+2) 2 +(у-5) 2 =9; 2) (х-2) 2 +(у-5) 2 =9; 3) (х-2) 2 +(у+5) 2 =9; 4) (х+2) 2 +(у+5) 2 =9

Задание 1. Из предложенных формул выберите ту формулу, которая задает функцию, представленную на рисунке

Взаимопроверка: обменяться листочками и проверить.

Вы знаете, что иллюстрацией уравнений служат их графики на координатной плоскости. Работа с таблицей. (Ученики работают в рабочих картах урока.)

График уравнения с двумя переменными. Слайд№ 11

Выражаем у через х

Данной формулой задается …

Прямая проходит через

Графики уравнений с 2 переменными весьма разнообразны.

Обратите внимание на таблицу:

1.Если уравнение — первой степени, график всегда — прямая.

2. Если второй степени, то получается гипербола или парабола.

  • 3. А если обе переменные входят в уравнение во второй степени, то какую линию имеем? Ответ учащихся: уравнение окружности. (х-а) 2 + (у-в) 2 =R 2 .

4. Конструирование новых знаний.

В 7 классе мы рассматривали системы уравнений первой степени с двумя переменными. Теперь займемся решением систем, составленных из двух уравнений второй степени или из одного уравнения первой степени, а другого второй степени.

Чтобы хорошо с этим разобраться, вспомним, как мы решали системы линейных уравнений.

1.Что такое система уравнений?(системой уравнений называется некоторое количество уравнений, объединенных фигурной скобкой)

2.Что значит фигурная скобка? (все уравнения решаются одновременно)

3.Что называется решением системы уравнений?

( .Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство)

4.Решить систему уравнений — это значит найти все её решения или установить, что их нет.

5.Какие способы решения систем вы знаете?(подстановки, сложения, графический)

6.Алоритм решения систем линейных уравнений с двумя переменными?(1.выразить в каждом уравнении у через х,2.построить одной системе координат графики полученных функций, 3.определить координаты точек пересечения, записать ответ)

Запишем тему урока

Дети в тетрадях пишут дату, тему урока «Графический способ решения систем уравнений»,

Проговорить цель урока. Слайд№13

Алгоритм решения систем нелинейных уравнений такой же, как и для систем линейных уравнений,

слайд № 14 .(учащиеся еще раз его проговаривают)

1.Выразить у через х в каждом уравнении.

2.Построить в одной системе координат график каждого уравнения.

3.Определить координаты точки пересечения графиков.

4.Записать ответ: х=…; у=… , или (х; у)

Но, к сожалению, графический способ не всегда обеспечивает высокую точность результата, не всегда решения являются точными. В основном этот метод применяется для:

* нахождения приближенных решений;

* с помощью этого метода легко выяснить, сколько решений может иметь система уравнений

5. Физкультминутка. Ученики встают с места, учитель называет формулы различных функций, ученики в воздухе пальцами рисуют соответствующие им графики у=х 2 , у=2х+5,у=3\х, у=-х 2 ,у=х 3, .у=-5\х.

6.Закрепление изученного материала.

Решим графически систему уравнений используя шаблоны и проговаривая уравнения.

Построим график функции . Графиком функции является парабола, ветви которой направлены вверх, а вершина в начале координат.

В этой же координатной плоскости построим график функции . Графиком функции является парабола, ветви которой направлены вниз, а вершина в точке (0; 2). Точки пересечения графиков запишем в ответ.

1 (На слайдах записаны системы уравнений.

7.Итог урока — рефлексия.

1) Составление кластера ( алгоритм решения системы уравнений графическим способом)

2)Сравните 2 темы: решение систем линейных уравнений с двумя переменными и решение систем нелинейных уравнений с двумя переменными.

Что общего? (алгоритм решения).

Есть различие? (число решений)

Сколько решений могла иметь систем линейных уравнений с двумя переменными?

  • одна точка, если прямые пересекаются;
  • если прямые параллельны, то нет решения;

если прямые совпадают, то бесконечное множество ре

8.Задание на дом:

Комментируются и выставляются оценки за урок ученикам, работавшим у доски, а также наиболее отличившимся на уроке.

— Наш урок подошел к концу. Благодарю всех за работу и желаю успехов при выполнении домашнего задания. Урок окончен. До свидания.

Источник

Читайте также:  Правила продажи ювелирных изделий дистанционным способом
Оцените статью
Разные способы