Уравнения вида способ их решения

Виды уравнений и методы их решения

В разработке рассматриваются виды алгебраических уравнений и методы их решения.

Просмотр содержимого документа
«Виды уравнений и методы их решения»

Виды уравнений и методы их решения

Уравнения подразделяются на две большие группы: алгебраические и трансцендентные. Алгебраическим называется такое уравнение, в котором для нахождения корня уравнения используются только алгебраические действия, а именно четыре арифметических – сложение, вычитание, умножение и деление, а также возведение в степень и извлечение натурального корня. Трансцендентным называется уравнение, в котором для нахождения корня используются не алгебраические функции: например, тригонометрические, логарифмические и иные.

В курсе математики основной школы рассматриваются только алгебраические уравнения. Рассмотрим более подробно их виды и алгоритм решения.

Группу алгебраических уравнений можно условно разделить на такие виды уравнений как:

целые — с обеими частями, состоящими из целых алгебраических выражений по отношению к неизвестным;

дробные — содержащие целые алгебраические выражения в числителе и знаменателе;

иррациональные — алгебраические выражения здесь находятся под знаком корня.

Дробные и иррациональные уравнения можно свести к решению целых уравнений.

Существует также и ещё одна классификация, которая основывается на степени, которая имеется в левой части многочлена. Исходя из этого различают линейные, квадратные и кубические уравнения. Линейные уравнения также могут называться уравнениями первой степени, квадратные — второй, а кубические, соответственно, третьей.

Рассмотрим особенности решения алгебраических уравнений

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Остановимся на основных понятиях.

Тождество — это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв. Для записи тождества наряду со знаком (равно) также используется знак (равносильности).

Уравнение — это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита:a, b, c. – или теми же буквами, снабженными индексами:, . или , . ); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита: или теми же буквами, снабженными индексами, например ….

В общем виде уравнение может быть записано так:

F ()=0.

В зависимости от числа неизвестных уравнение называют уравнением с одним, двумя и т. д. неизвестными.

Значение неизвестных, обращающие уравнение в тождество (верное равенство), называют решениями уравнения.

Решить уравнение – это значит найти множество его решений или доказать, что решений нет. В зависимости от вида уравнения множество решений уравнения может быть бесконечным, конечным и пустым.

Если все решения одного уравнения являются решениями другого уравнения, то такие уравнения называют эквивалентными.

Рассмотрим некоторые эквивалентные уравнения:

Уравнение эквивалентно уравнению , рассматриваемому на множестве допустимых значений исходного уравнения.

Уравнение =0 эквивалентно уравнению , рассматриваемому на множестве допустимых значений исходного уравнения.

эквивалентно двум уравнениям и.

Уравнение эквивалентно уравнению .

Уравнение при нечетном n эквивалентно уравнению , а при четном n эквивалентно двум уравнениям и .

Алгебраическим уравнением называется уравнение вида , где – многочлен n-й степени от одной или нескольких переменных.

Алгебраическим уравнением с одним неизвестным называется уравнение, сводящееся к уравнению вида:

,

где n – неотрицательное целое число; коэффициенты многочлена называются , ……коэффициентами (или параметрами), называется неизвестным и является искомым. Число n называется степенью уравнения.

Значения неизвестного , обращающие алгебраическое уравнение в тождество, называются корнями (решениями) алгебраического уравнения.

Есть несколько видов уравнений, которые решаются по готовым формулам. Это линейное и квадратное уравнения, а также уравнения вида , где F – одна из стандартных функций (степенная или показательная функция, логарифм, синус, косинус, тангенс или котангенс). Такие уравнения считаются простейшими. Так же существуют формулы и для кубического уравнения, но его к простейшим не относят.

Главная задача при решении любого уравнения – свести его к простейшим.

Все ниже перечисленные уравнения имеют так же и свое графическое решение, которое заключается в том, чтобы представить левую и правую части уравнения как две одинаковые функции от неизвестного. Затем строится график сначала одной функции, а затем другой и точка (и) пересечения двух графиков даст решение (я) исходного уравнения. Примеры графического решения всех уравнений даны в приложении.

Читайте также:  Аффирмация это способ снятия

Рассмотрим методы решения уравнений.

Линейным уравнением называется уравнение первой степени.

где a и b – некоторые действительные числа.

Линейное уравнение всегда имеет единственный корень , который находится следующим образом.

Прибавляя к обеим частям уравнения (1) число -b, получаем уравнение

, (2) эквивалентное уравнению (1). Разделив обе части уравнения (2) на величину , получаем корень уравнения (1):

Алгебраическое уравнение второй степени (3),

где a, b, с– некоторые действительные числа, называется квадратным уравнением.

Если , то квадратное уравнение (3) называется приведенным.

Корни квадратного уравнения вычисляются по формуле

Выражение называется дискриминантом квадратного уравнения.

если , то уравнение имеет два различных действительных корня;

если , то уравнение имеет один действительный корень кратности 2;

если , то уравнение действительных корней не имеет, а имеет два комплексно сопряженных корня:

Частными видами квадратного уравнения (3) являются:

1) Приведенное квадратное уравнение (в случае, если ), которое обычно записывается в виде

Корни приведенного квадратного уравнения вычисляются по формуле

Эту формулу называют формулой Виета – по имени французского математика конца XVI в., внесшего значительный вклад в становление алгебраической символики.

2) Квадратное уравнение с четным вторым коэффициентом, которое обычно записывается в виде

Корни этого квадратного уравнения удобно вычислять по формуле

Формулы (4) и (5) являются частными видами формулы для вычисления корней полного квадратного уравнения.

Корни приведенного квадратного уравнения

связаны с его коэффициентами Формулами Виета

В случае, если приведенное квадратное уравнение имеет действительные корни, формулы Виета позволяют судить как о знаках, так и об относительной величине корней квадратного уравнения, а именно:

если , , то оба корня отрицательны;

если , , то оба корня положительны;

если , , то уравнение имеет корни разных знаков, причем отрицательный корень по абсолютной величине больше положительного;

если , , уравнение имеет корни разных знаков, причем отрицательный корень по абсолютной величине меньше положительного корня.

Перепишем еще раз квадратное уравнение

и покажем еще один способ как можно вывести корни квадратного уравнения (6) через его коэффициенты и свободный член. Если

то корни квадратного уравнения вычисляются по формуле

которая может быть получена в результате следующих преобразований исходного уравнения, а так же с учетом формулы (7).

Заметим, что , поэтому

но , из формулы (7) поэтому окончательно

Если положить, что + , то

Заметим, что , поэтому

но , поэтому окончательно

Уравнения n-й степени вида

называется двучленным уравнением. При и заменой (2))

где — арифметическое значение корня, уравнение (8) приводится к уравнению

которое и будет далее рассматриваться.

Двучленное уравнение при нечетном n имеет один действительный корень . В множестве комплексных чисел это уравнение имеет n корней (из которых один действительный и комплексных):

Двучленное уравнение при четном n в множестве действительных чисел имеет два корня , а в множестве комплексных чисел n корней, вычисляемых по формуле (9).

Двучленное уравнение при четном n имеет один действительный корней , а в множестве комплексных чисел корней, вычисляемых по формуле

Двучленное уравнение при четном n имеет действительный корней не имеет. В множестве комплексных чисел уравнение имеет корней, вычисляемых по формуле (10).

Приведем краткую сводку множеств корней двучленного уравнения для некоторых конкретных значений n.

Уравнение имеет два действительных корня .

Уравнение имеет один дествительный корень и два комплексных корня

Уравнение имеет два действительных корния и два комплексных корня .

Уравнение действительных корней не имеет. Комплексные корни: .

Уравнение имеет один дествительный корень и два комплексных корня

Уравнение действительных корней не имеет. Комплексные корни:

Если квадратные уравнения умели решать еще математики Вавилонии и Древней Индии, то кубические, т.е. уравнения вида

оказались «крепким орешком». В конце XV в. профессор математики в университетах Рима и Милана Лука Пачоли в своем знаменитом учебнике «Сумма знаний по арифметике, геометрии, отношениям и пропорциональности» задачу о нахождении общего метода для решения кубических уравнений ставил в один ряд с задачей о квадратуре круга. И все же усилиями итальянских алгебраистов такой метод вскоре был найден.

Читайте также:  Способ введения вакцины акдс выберите один ответ

Начнем с упрощения

Если кубическое уравнение общего вида

разделить на , то коэффициент при станет равен 1. Поэтому в дальнейшем будем исходить из уравнения

Так же как в основе решения квадратного уравнения лежит формула квадрата суммы, решение кубического уравнения опирается на формулу куба суммы:

Чтобы не путаться в коэффициентах, заменим здесь на и перегруппируем слагаемые:

Мы видим, что надлежащим выбором , а именно взяв , можно добиться того, что правая часть этой формулы будет отличаться от левой части уравнения (11) только коэффициентом при и свободным членом. Сложим уравнения (11) и (12) и приведем подобные:

Если здесь сделать замену , получим кубическое уравнение относительно без члена с :

Итак, мы показали, что в кубическом уравнении (11) с помощью подходящей подстановки можно избавиться от члена, содержащего квадрат неизвестного. Поэтому теперь будем решать уравнение вида

Давайте еще раз обратимся к формуле куба суммы, но запишем ее иначе:

Сравните эту запись с уравнением (13) и попробуйте установить связь между ними. Даже с подсказкой это непросто. Надо отдать должное математикам эпохи Возрождения, решившим кубическое уравнение, не владея буквенной символикой. Подставим в нашу формулу :

Теперь уже ясно: для того, чтобы найти корень уравнения (13), достаточно решить систему уравнений

и взять в качестве сумму и . Заменой , эта система приводится к совсем простому виду:

Дальше можно действовать по-разному, но все «дороги» приведут к одному и тому же квадратному уравнению. Например, согласно теореме Виета, сумма корней приведенного квадратного уравнения равна коэффициенту при со знаком минус, а произведение – свободному члену. Отсюда следует, что и — корни уравнения

Выпишем эти корни:

Переменные и равны кубическим корням из и , а искомое решение кубического уравнения (13) – сумма этих корней:

Эта формула известная как формула Кардано.

подстановкой приводится к «неполному» виду

Корни , , «неполного» кубичного уравнения (14) равны

Пусть «неполное» кубичное уравнение (14) действительно.

а) Если («неприводимый» случай), то и

Во всех случаях берется действительное значение кубичного корня.

Алгебраическое уравнение четвертой степени.

где a, b, c – некоторые действительные числа, называется биквадратным уравнением. Заменой уравнение сводится к квадратному уравнению с последующим решением двух двучленных уравнений и ( и — корни соответствующего квадратного уравнения).

Если и , то биквадратное уравнение имеет четыре действительных корня:

Если , (3)), то биквадратное уравнение имеет два действительных корня и мнимых сопряженных корня:

Если и , то биквадратное уравнение имеет четыре чисто мнимых попарно сопряженных корня:

Уравнения четвертой степени

Метод решения уравнений четвертой степени нашел в XVI в. Лудовико Феррари, ученик Джероламо Кардано. Он так и называется – метод Феррари.

Как и при решении кубического и квадратного уравнений, в уравнении четвертой степени

можно избавиться от члена подстановкой . Поэтому будем считать, что коэффициент при кубе неизвестного равен нулю:

Идея Феррари состояла в том, чтобы представить уравнение в виде , где левая часть – квадрат выражения , а правая часть – квадрат линейного уравнения от , коэффициенты которого зависят от . После этого останется решить два квадратных уравнения: и . Конечно, такое представление возможно только при специальном выборе параметра . Удобно взять в виде , тогда уравнение перепишется так:

Правая часть этого уравнения – квадратный трехчлен от . Полным квадратом он будет тогда, когда его дискриминант равен нулю, т.е.

Это уравнение называется резольвентным (т.е. «разрешающим»). Относительно оно кубическое, и формула Кардано позволяет найти какой-нибудь его корень . При правая часть уравнения (15) принимает вид

а само уравнение сводится к двум квадратным:

Их корни и дают все решения исходного уравнения.

Решим для примера уравнение

Здесь удобнее будет воспользоваться не готовыми формулами, а самой идеей решения. Перепишем уравнение в виде

и добавим к обеим частям выражение , чтобы в левой части образовался полный квадрат:

Теперь приравняем к нулю дискриминант правой части уравнения:

или, после упрощения,

Один из корней полученного уравнения можно угадать, перебрав делители свободного члена: . После подстановки этого значения получим уравнение

откуда . Корни образовавшихся квадратных уравнений — и . Разумеется, в общем случае могут получиться и комплексные корни.

Читайте также:  Солим сыроежки холодным способом замачивание

подстановкой приводится к «неполному» виду

Корни , , , «неполного» уравнения четвертой степени (16) равны одному из выражений

в которых сочетания знаков выбираются так, чтобы удовлетворялось условие

причем , и — корни кубичного уравнения

Уравнения высоких степеней

Разрешимость в радикалах

Формула корней квадратного уравнения известна с незапамятных времен, а в XVI в. итальянские алгебраисты решили в радикалах уравнения третьей и четвертой степеней. Таким образом, было установлено, что корни любого уравнения не выше четвертой степени выражаются через коэффициенты уравнения формулой, в которой используются только четыре арифметические операции (сложение, вычитание, умножение, деление) и извлечение корней степени, не превышающей степень уравнения. Более того, все уравнения данной степени ( ) можно «обслужить» одной общей формулой. При подстановке в нее коэффициентов уравнения получим все корни – и действительные, и комплексные.

После этого естественно возник вопрос: а есть ли похожие общие формулы для решения уравнений пятой степени и выше? Ответ на него смог найти норвежский математик Нильс Хенрик Абель в начале XIX в. Чуть раньше этот результат был указан, но недостаточно обоснован итальянцем Паоло Руффини. Теорема Абеля-Руффини звучит так:

Общее уравнение степени при неразрешимо в радикалах.

Таким образом, общей формулы, применимой ко всем уравнениям данной степени , не существует. Однако это не значит, что невозможно решить в радикалах те или иные частные виды уравнений высоких степеней. Сам Абель нашел такое решение для широкого класса уравнений произвольно высокой степени – так называемых абелевых уравнений. Теорема Абеля-Руффини не исключает даже и того, что корни каждого конкретного алгебраического уравнения можно записать через его коэффициенты с помощью знаков арифметических операций и радикалов, в частности, что любое алгебраическое число, т.е. корень уравнения вида

с целыми коэффициентами, можно выразить в радикалах через рациональные числа. На самом деле такое выражение существует далеко не всегда. Это следует из теоремы разрешимости алгебраических уравнений, построенной выдающимся французским математиком Эваристом Галуа в его «Мемуаре об условиях разрешимости уравнений в радикалах» (1832 г.; опубликован в 1846 г.).

Подчеркнем, что в прикладных задачах нас интересует только приближенные значения корней уравнения. Поэтому его разрешимость в радикалах здесь обычно роли не играет. Имеются специальные вычислительные методы, позволяющие найти корни любого уравнения с любой наперед заданной точностью, ничуть не меньшей, чем дают вычисления по готовым формулам.

Уравнения, которые решаются

Хотят уравнения высоких степеней в общем случае неразрешимы в радикалах, да и формулы Кардано и Феррари для уравнений третьей и четвертой степеней в школе не проходят, в учебниках по алгебре, на вступительных экзаменах в институты иногда встречаются задачи, где требуется решить уравнения выше второй степени. Обычно их специально подбирают так, чтобы корни уравнений можно было найти с помощью некоторых элементарных приемов.

В основе одного из таких приемов лежит теорема о рациональных корнях многочлена:

Если несократимая дробь является корнем многочлена с целыми коэффициентами, то ее числитель является делителем свободного члена , а знаменатель — делителем старшего коэффициента .

Для доказательства достаточно подставить в уравнение и умножить уравнение на . Получим

Все слагаемые в левой части, кроме последнего, делятся на , поэтому и делится на , а поскольку и — взаимно простые числа, является делителем . Доказательство для аналогично.

С помощью этой теоремы можно найти все рациональные корни уравнения с целыми коэффициентами испытанием конечного числа «кандидатов». Например, для уравнения

старший коэффициент которого равен 1, «кандидатами» будут делители числа –2. Их всего четыре: 1, -1, 2 и –2. Проверка показывает, что корнем является только одно из этих чисел: .

Если один корень найден, можно понизить степень уравнения. Согласно теореме Безу,

остаток от деления многочлена на двучлен равен , т. е. .

Из теоремы непосредственно следует, что

Если — корень многочлена , то многочлен делится на , т. е. , где — многочлен степени, на 1 меньшей, чем .

Продолжая наш пример, вынесем из многочлена

множитель . Чтобы найти частное , можно выполнить деление «уголком»:

Источник

Оцените статью
Разные способы