Уравнение это арифметический способ

Решение текстовых задач арифметическим способом

Разделы: Математика

Обучение решению текстовых задач играет важную роль в формировании математических знаний. Текстовые задачи дают большой простор для развития мышления учащихся. Обучение решению задач – это не только обучение технике получения правильных ответов в некоторых типичных ситуациях, сколько обучение творческому подходу к поиску решения, накопление опыта мыслительной деятельности и демонстрация учащимися возможностей математики в решении разнообразных задач. Однако при решении текстовых задач в 5-6 классах чаще всего используется уравнение. Но мышление пятиклассников еще не готово к формальным процедурам, выполняемым при решении уравнений. Арифметический способ решения задач имеют ряд преимуществ по сравнению с алгебраическим потому, что результат каждого шага по действиям нагляднее и конкретнее, не выходит за рамки опыта пятиклассников. Школьники лучше и быстрее решают задачи по действиям, чем с помощью уравнений. Детское мышление конкретно, и развивать его надо на конкретных предметах и величинах, затем постепенно переходить к оперированию абстрактными образами.

Работа над задачей предусматривает внимательное прочтение текста условия, вникания в смысл каждого слова. Приведу примеры задач, которые легко и просто можно решить арифметическим способом.

Задача 1. Для приготовления варенья на две части малины берут три части сахара. Сколько килограммов сахара нужно взять на 2 кг 600 г малины?

При решении задачи на “части” надо приучить наглядно представлять условие задачи, т.е. лучше опираться на рисунок.

  1. 2600:2=1300 (г) — приходится на одну часть варенья;
  2. 1300*3= 3900 (г) — сахара нужно взять.

Задача 2. На первой полке стояло в 3 раза больше книг, чем на второй. На двух полках вместе стояло 120 книг. Сколько книг стояло на каждой полке?

1) 1+3=4 (части) — приходится на все книги;

2) 120:4=30 (книг) — приходится на одну часть ( книги на второй полке);

3) 30*3=90 (книг)- стояло на первой полке.

Задача 3. В клетке сидят фазаны и кролики. Всего в ней 27 голов и 74 ноги. Узнать число фазанов и число кроликов в клетке.

Представим, что на крышку клетки, в которой сидят фазаны и кролики, мы положили морковку. Тогда все кролики встанут на задние лапки, чтобы дотянуться до нее. Тогда:

  1. 27*2=54 (ноги) — будут стоять на полу;
  2. 74-54=20 (ног) — будут наверху;
  3. 20:2=10 (кроликов);
  4. 27-10=17 (фазанов).

Задача 4. В нашем классе 30 учащихся. На экскурсию в музей ходили 23 человека, а в кино – 21, а 5 человек не ходили ни на экскурсию, ни в кино. Сколько человек ходили и на экскурсию, и в кино?

Для анализа условия и выбора плана решения можно использовать “круги Эйлера”.

  1. 30-5=25 (человек) – ходили или в кино, или на экскурсию,
  2. 25-23=2 (человек) – ходили только в кино;
  3. 21-2=19 ( человек) – ходили и в кино, и на экскурсию.

Задача 5. Три утенка и четыре гусенка весят 2 кг 500 г, а четыре утенка и три гусенка весят 2кг 400г. Сколько весит один гусенок?

  1. 2500+2400=2900 (г) – весят семь утят и семь гусят;
  2. 4900:7=700 (г) – вес одного утенка и одного гусенка;
  3. 700*3=2100 (г) – вес 3 утят и 3 гусят;
  4. 2500-2100=400 (г) – вес гусенка.

Задача 6. Для детского сада купили 20 пирамид: больших и маленьких – по 7 и по 5 колец. У всех пирамид 128 колец. Сколько было больших пирамид?

Представим, что со всех больших пирамид мы сняли по два кольца. Тогда:

1) 20*5=100 (колец) – осталось;

2) 128-100-28 (колец) – мы сняли;

3) 28:2=14 (больших пирамид).

Задача 7. Арбуз массой 20кг содержал 99% воды. Когда он немного усох, содержание воды в нем уменьшилось до 98%. Определите массу арбуза.

Для удобства решение будет сопровождаться иллюстрацией прямоугольников.

99% вода 1% сухое вещество
98% вода 2% сухое вещество

При этом желательно рисовать прямоугольники “сухого вещества” равными, потому что масса “сухого вещества” в арбузе остается неизменной.

1) 20:100=0,2 (кг) – масса “сухого вещества”;

2) 0,2:2=0,1 (кг) – приходится на 1% усохшего арбуза;

3) 0,1*100=10 (кг) – масса арбуза.

Задача 8. Гости спросили: сколько лет исполнилось каждой из трех сестер? Вера ответила, что ей и Наде вместе 28 лет, Наде и Любе вместе 23 года, а всем троим 38 лет. Сколько лет каждой из сестер?

  1. 38-28=10 (лет) – Любе;
  2. 23-10=13 (лет) – Наде;
  3. 28-13=15 (лет) – Вере.

Арифметический способ решения текстовых задач учит ребенка действовать осознанно, логически правильно, потому что при решении таким способом усиливается внимание к вопросу “почему” и имеется большой развивающий потенциал. Это способствует развитию учащихся, формированию у них интереса к решению задач и к самой науке математике.

Чтобы сделать обучение посильным, увлекательным и поучительным, надо очень внимательно отнестись к выбору текстовых задач, рассматривать различные способы их решения, выбирая оптимальные из них, развивать логическое мышление, что в дальнейшем необходимо при решении геометрических задач.

Читайте также:  Решение иррациональных неравенств графическим способом

Научиться решать задачи школьники смогут, лишь решая их. “Если вы хотите научиться плавать, то смело входите в воду, а, если хотите научиться решать задачи, то решайте их”,- пишет Д.Пойа в книге “ Математическое открытие”.

Источник

Статья на тему «Алгебраический метод решения текстовых задач для нахождения арифметического способа их решения»

Алгебраический метод решения текстовых задач для нахождения арифметического способа их решения

Решение текстовых задач младшими шк ольниками можно рассматривать как средство и как метод обучения, в ходе использования которых происходит усвоение содержания начального курса математики: математических понятий, смысла арифметических действий и их свойств, формирование вычислительных навыков и практических умений.

Учитель, руководящий процессом решения задач школьниками, должен прежде всего сам иметь решать задачи, а также владеть необходимыми знаниями и умениями учить этому других.

Умение решать задачи — основа математической подготовки учителя к обучению младших школьников решению текстовых задач.

Среди распространенных методов решения текстовых задач (алгебраический, арифметический и геометрический) наибольшее применение в начальных классах для большинства задач находит арифметический метод, включающий в себя различные способы их решения. Однако для учителя во многих случаях данный метод решения задач является более сложным, чем алгебраический. Связано это, в первую очередь, с тем , что из курса математики средней школы

практически исключен курс арифметики, который предусматривал формирование у школьников умения решать задачи арифметическим методом. Во-вторых, в вузовском курсе математики ему так же не уделяется должного внимания.

Вместе с тем необходимость в решении задач арифметическим методом диктуется запасом математических знаний младшего школьника, который не позволяет им решать большинство задач, применяя элементы алгебры.

Учитель способен, как правило, любую задачу решить алгебраически, однако далеко не каждый может решить любую задачу арифметически.

Вместе с тем указанные методы взаимосвязаны, и эту взаимосвязь учитель не только должен подмечать, но и использовать в своей работе. В данной статье на примере решения некоторых задач мы попытаемся показать связь алгебраического и арифметического методов решения задач, чтобы помочь учителю найти арифметический способ решения задачи, решив ее алгебраически.

Предварительно сделаем несколько замечаний:

1. Не всегда (и даже далеко не всегда) текстовая задача, решаемая алгебраическим методом, может быть решена арифметическим. Следует помнить, что решить задачу, применяя арифметический метод, можно в том случае, когда ее алгебраическая модель сводится к линейному уравнению или системе линейных уравнении.

2. Вид линейного уравнения не всегда «подсказывает» арифметический путь решения задачи, однако дальнейшие преобразования уравнения позволяют его найти. Решение системы линейных уравнений, на наш взгляд, практически сразу дает возможность наметить ход рассуждений для решения задачи арифметическим способом.

Пример 1. Задача сводится к уравнению

Задача. В 8 часов утра из пункта А в пункт В вышел поезд со скоростью 60 км/ч. В 11 часов из пункта В ему навстречу вышел другой поезд со скоростью 70 км/ч. В какое время поезда встретятся, если расстояние между пунктами 440 км?

Алгебраический метод приводит к уравнению: (60 + 70) х + 60 • 3 = 440 или 130х+18= 440, где х часов — время движения второго поезда до встречи. Тогда: 130 х = 440- 180= 130

Проделанные рассуждения и выкладки «подсказывают» следующий арифметический путь решения задачи. Найдем: сумму скоростей поездов (60 + 70 = 130 (км/ч), время движения первого поезда до начала движения второго поезда (11-8=3 (ч), расстояние, пройденное первым поездом за 3 часа (60 • 3 = 180 (км), расстояние, которое осталось пройти поездам до встречи (440 — 180 = = 260 (км), время движения второго поезда до встречи (260 : 130 -2 (ч)).

В дальнейшем этапы решения каждой задачи алгебраическим методом и соответствующие им этапы решения задачи арифметическим методом будем параллельно записывать в таблице, которая позволит наглядно проследить, как алгебраические преобразования в «ходе решения уравнений, являющихся моделью текстовой задачи, открывают арифметический способ решения. Так, в данном случае будем иметь следующую таблицу (см. таблицу 1).

Пусть х часов — время движения второго поезда до встречи. По условию задачи получаем уравнение:

(60+70)-х+60*3=440 или 130х+180=440

Найдем сумму скоростей поездов: 60+70=130(км/ч).

Найдем время движения первого поезда до начала движения второго поезда: 11-8=3(ч). Найдем расстояние, пройденное первым поездом за 3 часа: 60*3=180(км)

Найдем расстояние, которое осталось пройти поездам до встречи: 440-180=260(км).

Найдем время движения второго поезда: 260:130=2(ч).

Используя данные таблицы 1, получаем арифметическое решение.

= 3 (ч)- был в пути первый поезд до начала движения второго;

3 = 180 (км) — прошел первый поезд за 3 часа;

3) 440 — 180 = 260 (км) — расстояние, пройденное поездами при одновременном движении;

70 = 130 (км/ч) — скорость сближения поездов;

130 = 2 (ч) — время движения второго поезда;

6)11 + 2 = 13 (ч) — в такое время поезда встретятся.

Читайте также:  Таблица по русскому способы словообразования

Ответ: в 13 часов.

Пример 2. Задача сводится к уравнению вида: а 1 х +в 1 =а х+в

Задача. Школьники купили 4 книги, после чего у них осталось 40 рублей. Если бы они купили 7 таких же книг, то у них осталось бы 16 рублей. Сколько стоит одна книга?

Алгебраический метод приводит к уравнению: + 40 = + 16, где х — стоимость одной книги. В ходе решения данного уравнения мы проделываем следующие выкладки: 7 х — 4 х =40-16 —> Зх=24 —> х= 8, которые вместе с рассуждениями, использовавшимися при составлении уравнения, приводят к арифметическому способу решения задачи. Найдем: на сколько больше книг купили: 7-4=3 (кн.); на сколько меньше денег останется, т.е. на сколько больше денег израсходовали: 40 — 16 = 24 (р); сколько стоит одна книга: 24 : 3 = 8 (р). Проделанные рассуждения сведем в таблицу 2.

Этапы решения задачи

Этапы решения задачи арифметическим методом

Пусть х — стоимость одной книги. По условию задачи

получаем уравнение: 4х+40=7х+16.

7х-4х=40-16 (7-4)х=24 3х=24

Стоимость четырех книг и еще 40р. равна стоимости 7 книг и еще 70р.

Найдем, на сколько больше книг купили бы: 7-4=3(кн). Найдем, на сколько больше заплатили бы денег: 40-16=24(р.).

Найдем стоимость одной книги: 24:3=8(р.).

Используя данные таблицы 2, получаем арифметическое решение:

1) 7-4=3 (кн.) — на столько книг купили бы больше;

— 16 = 24 (р.) — на столько рублей заплатили бы больше;

3)24 : 3 = 8 (р.) — стоит одна книга.

Пример 3. Задача сводится к уравнению вида: ах + b x + сх = d

Задача. Турист проехал 2 200 км, причем на теплоходе проехал вдвое больше, чем на автомобиле, а на поезде в 4 раза больше, чем на теплоходе. Сколько километров проехал турист отдельно на теплоходе, автомобиле и на поезде?

Используя данные таблицы 3, получаем арифметическое решение.

Примем расстояние, которое турист проехал на автомобиле, за одну часть:

1 • 2 = 2 (ч.) – приходится на расстояние, которое преодолел турист на теплоходе;

2) 2 • 4 = 8 (ч.) – приходится на расстояние, которое преодолел турист на поезде;

3) 1+2+8=11(ч) — приходится на весь путь

Пусть х километров –расстояние, которое турист проехал на теплоходе.

По условию задачи получаем уравнение: х+2х+2*4х=2200.

Примем расстояние, которое турист проехал на автомобиле (самое меньшее), за 1 часть. Тогда расстояние, которое он проехал на теплоходе, будет соответствовать двум частям, а на поезде – 2 – 4 частям. Значит, весь путь туриста (2200 км) соответствует 1+2+8=11 (ч.).

Найдем, сколько частей составляет весь путь туриста: 1+2+8=11 (ч.).

Найдем, сколько километров приходится на одну часть: 2200:11=200 (км).

200: 11= 200 (км) — расстояние, которое преодолел турист на автомобиле;

2 = 400 (км) — расстояние, которое преодолел турист на теплоходе;

6)200 -8=1 600 (км) — расстояние, которое преодолел турист на поезде.

Ответ: 200 км, 400 км, 1 600 км.

Пример 4. Задача сводится к уравнению вида+ а) в = сх + d .

Задача. По окончании спектакля 174 зрителя из театра разошлись пешком, а остальные поехали на трамваях в 18 вагонах, причем в каждый вагон садилось на 5 человек больше, чем было в нем мест. Если бы зрители, уезжавшие из театра на трамвае, садились в него по числу мест, то понадобилось бы еще 3 вагона, причем в последнем осталось бы 6 свободных мест. Сколько всего зрителей было в театре?

Пусть в каждом трамвае было х мест. Тогда по условию задачи имеем уравнение: (х+5)*18=х*(18+3)-6.

Преобразуем уравнение: 21х – 18х = 90+6 или 3х = 96.

В каждый вагон входило на 5 человек больше, чем было в нем мест. В 18 вагонах – на 5 * 18 = 90 человек больше. В 3 дополнительных вагона вошло 90 человек и осталось еще 6 свободных мест. Следовательно, в трех вагонах 90 + 6 = 96 мест.

Найдем количество мест в одном вагоне:

Используя данные таблицы 4, получаем арифметическое решение:

1)5•18 = 90 (чел.) — на столько человек больше, чем мест было в 18 вагонах;

90 + 6 = 96 (м.) — в трех вагонах;

96 : 3 = 32 (м.) — в одном вагоне;

32 + 5 = 37 (чел.) — было в каждом из 18 вагонов;

37 • 18 = 666 (чел.) — уехало на трамваях;

666 + 174 = 840 (чел.) — было в театре.

Ответ: 840 зрителей.

Пример 5. Задача сводится к системе уравнений вида: х+ у = а, х –у = b .

Задача. Пояс с пряжкой стоит 12 рублей, причем пояс дороже пряжки на 6 рублей.

Сколько стоит пояс, сколько стоит пряжка?

Алгебраический метод приводит к системе уравнений:

х-у=6 где х: рублей — цена пояса, у рублей — цена пряжки.

Данную систему можно решить методом подстановки: выразив одно неизвестное через другое. Из первого уравнения, подставив его значение во второе уравнение, решить полученное уравнение с одним неизвестным, найти второе неизвестное. Однако в этом случае мы не сможем «нащупать» арифметический путь решения задачи.

Читайте также:  Способы компенсации сверхурочной работы

Сложив уравнения системы, мы сразу будем иметь уравнение 2х = 18.
Откуда находим стоимость пояса х = 9 (р.). Этот способ решения системы позволяет получить следующий арифметический ход рассуждений. Предположим, что пряжка стоит столько же, сколько и пояс. Тогда пряжка с поясом (или 2 пояса) будут стоить 12+6= 18 (р.) (так как на самом деле пряжка на 6 рублей стоит дешевле). Следовательно, один пояс стоит 18:2=9 (р.).

Если мы вычтем почленно из первого уравнения второе, то получим уравнение 2 у =6, откуда у = 3 (р.). В этом случае, решая задачу арифметическим методом, рассуждать следует так. Предположим, что пояс стоит столько же, сколько и пряжка. Тогда пряжка и пояс (или две пряжки) будут стоить 12-6=6 (р.) (так как на самом деле пояс на 6 рублей стоит дороже).
Следовательно, одна пряжка стоит 6:2=3 (р.)

Пусть х рублей – цена пояса, у рублей – цена пряжки. По условию задачи получаем систему уравнений:

Почленно сложив уравнения системы, получим: 2х = 12 + 6 2х = 18.

Пояс с пряжкой стоят 12р. И пояс дороже пряжки на 6р.

Предположим, что пряжка стоит столько же, сколько и пояс, тогда два пояса стоят 12 + 6 = 18 (р.).

Найдем цену пояса:

Используя данные таблицы 5, получаем арифметическое решение:

12+6= 18 (р.) — стоили бы два пояса, если бы пряжка стоила столько же, сколько и пояс;

2) 18:2=9 (р.) — стоит один пояс;

3) 12-9=3 (р.) — стоит одна пряжка.

О т в е т: 9 рублей, 3 рубля.

Пример 6. Задача сводится к системе уравнений вида:

ах + Ьу = с 1 х+у=с2

Задача. Для похода 46 школьников приготовили четырех- и шестиместные лодки. Сколько было тех и других лодок, если все ребята разместились в десяти лодках и свободных мест не осталось ?

Пусть х – количество четырехместных лодок, у – количество шестиместных лодок. По условию задачи имеем систему уравнений:

Умножаем обе части первого уравнения на 4.

Вычитаем ( почленно ) полученное уравнение из второго. Имеем:

(6 – 4) у = 46 – 40 или 2у = 6.

Всех лодок 10 и в них разместилось 46 школьников.

Предположим, что все лодки были четырехместными. Тогда м них разместилось бы 40 человек.

Найдем, на сколько больше человек вмещает шестиместная лодка, чем четырехместная: 6 – 4 = 2 (чел.). Найдем, скольким школьникам не хватит мест, если все лодки будут четырехместные: 46 – 40 = 6 (чел.).

Найдем количество шестиместных лодок: 6 : 2 = 3 (шт.).

Используя данные таблицы 6, получаем арифметическое решение:

1)4- 10 = 40 (чел.) — разместилось бы, если бы все лодки были четырехместными;

2) 6 — 4 = 2 (чел.) — на столько человек шестиместная лодка вмещает больше, чем четырехместная;

3)46 — 40 — 6 (чел.) — стольким школьникам не хватит места, если

все лодки четырехместные;

4) 6 : 2 = 3 (шт.) — было шестиместных лодок;

5) 10 — 3 = 7 (шт.) — было четырехместных лодок.

Ответ: 3 шестиместные лодки, 7 четырехместных лодок .

Пример 7. Задача сводится к системе уравнений вида: а х+Ь у=с1; а х +Ь у=с2

Задача. 3 ручки и 4 блокнота стоят 26 рублей, а 7 ручек и 6 таких же блокнотов стоят 44рубля. Сколько стоит блокнот?

Пусть х рублей – цена ручки, у рублей – цена блокнота. По условию задачи получаем систему уравнений:

Умножим обе части первого уравнения на 7. Получим:

21 х + 28 у = 182,

21 х + 18 у = 132.

Вычтем (почленно) из первого уравнения второе.

(28 – 18) у = 182 – 132 или 10 у = 50.

3 ручки и 4 блокнота стоят 26 рублей. 7 ручек и 6 блокнотов стоят 44 рубля.

Уравняем количество ручек в двух покупках. Для этого найдем наименьшее кратное чисел 3 и 7 (21). Тогда в результате первой покупки были куплены 21 ручка и 28 блокнотов, а второй – 21 ручка и 18 блокнотов. Найдем стоимость каждой покупки в этом случае:

26 * 7 = 182 (р.), 44 * 3 = 132 (р.).

Найдем, на сколько больше блокнотов было куплено в первый раз:

Найдем, на сколько больше заплатили бы при первой покупке:

Найдем, сколько стоит Блокнот:

Используя данные таблицы 7, получаем арифметическое решение:

1) 26 • 7 = 182 (р.) — стоят 21ручка и 28 блокнотов;

2) 44 • 3 = 132 (р.) — стоят 21ручка и 18 блокнотов;

3) 28 — 18 = 10 (шт.) — на столько блокнотов в первой покупке было бы больше, чем во второй;

4) 182 — 132 = 50 (р.) — стоят 10 блокнотов;

5) 50 : 10=5 (р.) — стоит блокнот.

Мы рассмотрели некоторые виды текстовых задач, встречающиеся в различных учебниках математики для начальных классов. Несмотря на кажущуюся простоту установления связи между алгебраическим и арифметическим методами, этот прием все же требует тщательной отработки со студентами на практических занятиях и кропотливой работы учителя в ходе самоподготовки к уроку.

Источник

Оцените статью
Разные способы