Уравнение бернулли способы его решения
Уравнение Бернулли является одним из наиболее известных нелинейных дифференциальных уравнений первого порядка . Оно записывается в виде \[y’ + a\left( x \right)y = b\left( x \right)
Если \(m = 0,\) то уравнение Бернулли становится линейным дифференциальным уравнением . В случае когда \(m = 1,\) уравнение преобразуется в уравнение с разделяющимися переменными .
В общем случае, когда \(m \ne 0,1,\) уравнение Бернулли сводится к линейному дифференциальному уравнению с помощью подстановки \[z =
Нетрудно заметить, что данное дифференциальное уравнение является уравнением Бернулли. Чтобы решить его, выполним подстановку \[z =
Дифференциальное уравнение для новой переменной \(z\) имеет вид: \[ — z’ + \frac
Тогда общее решение линейного дифференциального уравнения для функции \(z\left( x \right)\) определяется формулой \[
Сначала мы проверим, что заданное дифференциальное уравнение является уравнением Бернулли: \[ <4xyy' =
Видно, что только решение с положительным знаком удовлетворяет данному условию. Следовательно, \[
4xyy'>
Итак, решение задачи Коши выражается функцией \[y = x\sqrt <\ln \sqrt x + 4>.\]
Источник
Дифференциальные уравнения Бернулли в примерах решений
Дифференциальным уравнением Бернулли называется уравнение вида
,
Таким образом, дифференциальное уравнение Бернулли обязательно содержит функцию y в степени, отличной от нуля и единицы.
В случае, если m = 0 , уравнение является линейным, а в случае, если m = 1 , уравнение является уравнением с разделяющимися переменными.
Дифференциальное уравнение Бернулли можно решить двумя методами.
- Переходом с помощью подстановки к линейному уравнению.
- Методом Бернулли.
Переход от уравнения Бернулли к линейному уравнению.
Уравнение делим на :
,
.
Обозначим . Тогда
, откуда
. Переходя к новой переменной, получим уравнение
,
которое является линейным дифференциальным уравнение первого порядка. Его можно решить методом вариации константы Лагранжа или методом Бернулли.
Решение методом Бернулли.
Решение следует искать в виде произведения двух функций y = u ⋅ v . Подставив его в дифференциальное уравнение, получим уравнение
.
Из слагаемых, содержащих функцию u в первой степени, вынесем её за скобки:
.
Приравняв выражение в скобках нулю, то есть
,
получим дифференциальное уравнение с разделяющимися переменными для определения функции v .
Функцию u следует находить из дифференциального уравнения
,
которое также является уравнение с разделяющимися переменными.
Пример 1. Решить дифференциальное уравнение Бернулли
.
Решение. Решим дифференциальное уравнение двумя методами.
1. Переход от уравнения Бернулли к линейному уравнению. Данное уравнение умножим на y³ :
.
Введём обозначение , тогда
,
и приходим к уравнению
.
Решим его методом Бернулли. В последнее уравнение подставим z = u ⋅ v , z‘ = u‘v + uv‘ :
,
.
Выражение в скобках приравняем нулю и решим полученное дифференциальное уравнение:
Полученную функцию v подставим в уравнение:
2. Методом Бернулли. Ищем решение в виде произведения двух функций y = u ⋅ v . Подставив его и y‘ = u‘v + uv‘ в данное дифференциальное уравнение, получим
Выражение в скобках приравняем нулю и определим функцию v :
Полученную функцию v подставим в уравнение и определим функцию u :
И, наконец, найдём решение данного дифференциального уравнения:
Пример 2. Решить дифференциальное уравнение Бернулли
.
Решение. Это уравнение, в котором m = −1 . Применив подстановку y = u ⋅ v , получим
Выражение в скобках приравняем нулю и определим функцию v :
Полученную функцию v подставим в уравнение и определим функцию u :
Таким образом, получаем решение данного дифференциального уравнения:
.
Пример 3. Решить дифференциальное уравнение Бернулли
.
Решение. Это уравнение можно решить, используя подстановку y = u ⋅ v . Получаем
Приравняем нулю выражение в скобках и решим полученное уравнение с разделяющимися переменными:
Подставляем v в данное уравнение и решаем полученное уравнение:
и проинтегрируем обе части уравнения:
Далее используем подстановку
:
.
Таким образом, получаем функцию u :
.
и решение данного дифференциального уравнения:
Пример 4. Решить задачу Коши для дифференциального уравнения
при условии .
Решение. Перепишем уравнение, перенося в левую сторону линейные слагаемые, а в правую — нелинейные:
.
Это уравнение Бернулли, которое можно решить, используя подстановку y = u ⋅ v , y‘ = u‘v + uv‘ :
Выражение в скобках приравняем нулю и решим дифференциальное уравнение с разделяющимися переменными:
Подставим функцию v в данное уравнение и решим полученное дифференциальное уравнение:
Вычислим каждый интеграл отдельно. Первый:
.
Второй интеграл интегрируем по частям. Введём обозначения:
Приравниваем друг другу найденные значения интегралов и находим функцию u :
Таким образом, общее решение данного дифференциального уравнения:
.
Используем начальное условие, чтобы определить значение константы:
Ищем частное решение, удовлетворяющее начальному условию:
В результате получаем следующее частное решение данного дифференциального уравнения:
.
И напоследок — пример с альтернативным обозначением производных — через дробь.
Пример 5. Решить дифференциальное уравнение Бернулли
.
Решение. Решим это уравнение первым из представленных в теоретической части методом — переходом к линейному уравнению. Разделив данное уравнение почленно на y³ , получим
.
Введём новую функцию . Тогда
.
Подставляя эти значения в уравнение, полученное на первом шаге, получим линейное уравнение:
.
Найдём его общий интеграл:
,
.
Подставляя эти значение в полученное линейное уравнение, получаем
.
Приравниваем нулю выражение в скобках:
Для определения функции u получаем уравнение
.
Интегрируем по частям:
Таким образом, общий интеграл данного уравнения
.
Источник