- Регулирование скорости асинхронного двигателя
- Регулирование оборотов асинхронного двигателя: несколько способов изменения скорости
- Асинхронный привод с ротором и регулирование оборотов
- Регулирование оборотов асинхронного привода
- Регулирование количества пар плюсов асинхронного привода
- Двигатели с ротором на фазу и регулирование их скорости оборотов
- Регулировка напряжения
- Контроль сопротивления в роторе
- Контроль с помощью двойной подпитки
- Мягкий старт начала работы
- Самостоятельное создание устройства контроля вращения
Регулирование скорости асинхронного двигателя
Наиболее распространены следующие способы регулирования скорости асинхронного двигателя : изменение дополнительного сопротивления цепи ротора, изменение напряжения, подводимого к обмотке статора, двигателя изменение частоты питающего напряжения, а также переключение числа пар полюсов.
Регулирование частоты вращения асинхронного двигателя путем введения резисторов в цепь ротора
Введение резисторов в цепь ротора приводит к увеличению потерь мощности и снижению частоты вращения ротора двигателя за счет увеличения скольжения, поскольку n = n о (1 — s).
Из рис. 1 следует, что при увеличении сопротивления в цепи ротора при том же моменте частота вращения вала двигателя уменьшается.
Жесткость механических характеристик значительно снижается с уменьшением частоты вращения, что ограничивает диапазон регулирования до (2 — 3) : 1. Недостатком этого способа являются значительные потери энергии, которые пропорциональны скольжению. Такое регулирование возможно только для двигателя с фазным ротором.
Регулирование частоты вращения асинхронного двигателя изменением напряжения на статоре
Изменение напряжения, подводимого к обмотке статора асинхронного двигателя , позволяет регулировать скорость с помощью относительно простых технических средств и схем управления. Для этого между сетью переменного тока со стандартным напряжением U 1ном и статором электродвигателя включается регулятор напряжения .
При регулировании частоты вращения асинхронного двигателя изменением напряжения, подводимого к обмотке статора, критический момент М кр асинхронного двигателя изменяется пропорционально квадрату подводимого к двигателю напряжения U рет (рис. 3 ), а скольжение от U рег не зависит.
Рис. 1. Механические характеристики асинхронного двигателя с фазным ротором при различных сопротивлениях резисторов, включенных в цепь ротора
Рис. 2. Схема регулирования скорости асинхронного двигателя путем изменения напряжения на статоре
Рис. 3. Механические характеристики асинхронного двигателя при изменении напряжения подводимого к обмоткам статора
Если момент сопротивления рабочей машины больше пускового момента электродвигателя (Мс > Мпуск), то двигатель не будет вращаться, поэтому необходимо запустить его при номинальном напряжении Uном или на холостом ходу.
Регулировать частоту вращения короткозамкнутых асинхронных двигателей таким способом можно только при вентиляторном характере нагрузки. Кроме того, должны использоваться специальные электродвигатели с повышенным скольжением. Диапазон регулирования небольшой, до n кр.
Для изменения напряжения применяют трехфазные автотрансформаторы и тиристорные регуляторы напряжения.
Рис. 4. Схема замкнутой системы регулирования скорости тиристорный регулятор напряжения — асинхронный двигатель (ТРН — АД)
Замкнутая схема управления асинхронным двигателем , выполненным по схеме тиристорный регулятор напряжения — электродвигатель позволяет регулировать скорость асинхронного двигателя с повышенным скольжением (такие двигатели применяются в вентиляционных установках).
Регулирование частоты вращения асинхронного двигателя изменением частоты питающего напряжения
Так как частота вращения магнитного поля статора n о = 60 f /р, то регулирование частоты вращения асинхронного двигателя можно производить изменением частоты питающего напряжения.
Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту питающего напряжения, можно в соответствии с выражением при неизменном числе пар полюсов р изменять угловую скорость n о магнитного поля статора.
Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.
Для получения высоких энергетических показателей асинхронных двигателей (коэффициентов мощности, полезного действия, перегрузочной способности) необходимо одновременно с частотой изменять и подводимое напряжение. Закон изменения напряжения зависит от характера момента нагрузки Мс. При постоянном моменте нагрузки напряжение на статоре должно регулироваться пропорционально частоте.
Схема частотного электропривода приведена на рис. 5, а механические характеристики АД при частотном регулировании — на рис. 6.
Рис. 5. Схема частотного электропривода
Рис. 6. Механические характеристики асинхронного двигателя при частотном регулировании
С уменьшением частоты f критический момент несколько уменьшается в области малых частот вращения. Это объясняется возрастанием влияния активного сопротивления обмотки статора при одновременном снижении частоты и напряжения.
Частотное регулирование скорости асинхронного двигателя позволяет изменять частоту вращения в диапазоне (20 — 30) : 1. Частотный способ является наиболее перспективным для регулирования асинхронного двигателя с короткозамкнутым ротором. Потери мощности при таком регулировании невелики, поскольку минимальны потери скольжения.
Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.
Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.
Силовой трехфазный импульсный инвертор содержит шесть транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.
В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями. Регулирование выходной частоты I вых и выходного напряжения осуществляется за счет высокочастотной широтно-импульсной модуляции.
Регулирование частоты вращения асинхронного двигателя переключение числа пар полюсов
Ступенчатое регулирование скорости можно осуществить, используя специальные многоскоростные асинхронные двигатели с короткозамкнутым ротором.
Из выражения n о = 60 f /р следует, что при изменении числа пар полюсов р получаются механические характеристики с разной частотой вращения n о магнитного поля статора. Так как значение р определяется целыми числами, то переход от одной характеристики к другой в процессе регулирования носит ступенчатый характер.
Существует два способа изменения числа пар полюсов. В первом случае в пазы статора укладывают две обмотки с разным числом полюсов. При изменении скорости к сети подключается одна из обмоток. Во втором случае обмотку каждой фазы составляют из двух частей, которые соединяют параллельно или последовательно. При этом число пар полюсов изменяется в два раза.
Рис. 7. Схемы переключения обмоток асинхронного двигателя: а — с одинарной звезды на двойную; б — с треугольника на двойную звезду
Регулирование скорости путем изменения числа пар полюсов экономично, а механические характеристики сохраняют жесткость. Недостатком этого способа является ступенчатый характер изменения частоты вращения асинхронного двигателя с короткозамкнутым ротором. Выпускаются двухскоростные двигатели с числом полюсов 4/2, 8/4, 12/6. Четырехскоростной электродвигатель с полюсами 12/8/6/4 имеет две переключаемые обмотки.
Использованы материалы книги Дайнеко В.А., Ковалинский А.И. Электрооборудование сельскохозяйственных предприятий.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Регулирование оборотов асинхронного двигателя: несколько способов изменения скорости
Асинхронные двигатели (они же АД) довольно популярны среди современных технических средств из-за простой сборки и надёжности в работе. Многие станки и заводское оборудование сегодня оснащены именно такими электрическими двигателями.
Скорость вращения асинхронного двигателями производится разными способами, иногда механически с нагрузкой на вал, а иногда электрической регулировкой (у которой есть своим плюсы и минусы).
Чаще всего выбирают электрическое управление. Такое управление возможно благодаря силе тока, уровню напряжения в сети и частоте тока, которые влияют на работу электрического двигателя.
Сегодня мы расскажем о самых востребованных способах регулирование вращения асинхронного двигателя.
Асинхронный привод с ротором и регулирование оборотов
Есть два способа регулирования числа оборотов:
- Регулирование магнитного поля статора, где благодаря изменению числа пар плюсов можно управлять вращением;
- Регулирование напряжение, благодаря чему происходит изменение скольжения электрического мотора, и появляется возможность управления вращением.
Регулирование оборотов асинхронного привода
В этом способе регулирование возможно благодаря подключению к асинхронному электрическому двигателю специального аппарата для изменения частот. Делается это с помощью преобразователей. Более наглядно действие процесса можно увидеть на этой формуле:
Для сохранения магнитного потока, который в свою очередь сохраняет перегрузочную способность электрического мотора, нужно в одно время следить за уровнями частоты и напряжения. В виде формулы это выглядит так:
Критический момент не будет изменён. Другие характеристики можно увидеть на картинке ниже, и если Вы не понимаете, что означают эти характеристики, лучше не применять этот способ самостоятельно.
Плюсам способа: мягкость регулировки, возможность менять скорость оборотов, строгая неизменность характеристик и возможность сэкономить.
Минус следующий: нужен частотный преобразователь, из-за которого стоимость всего механизма возрастёт. Кстати, сегодня можно купить устройства на одну и на три фазы менее, чем за 150 долларов. Это хорошая цена за полноценный контроль.
Регулирование количества пар плюсов асинхронного привода
Применим для асинхронных двигателей с высокой скоростью и сложной обмоткой, которая и помогает изменять пары плюсов. Скорости двигателя могут быть разными, принцип контроля рассмотрим на двигателе с двумя скоростями.
В таком устройстве все фазы содержат две половинчатые обмотки. Вращение изменяется в зависимости от того, каким способом они подключены к двигателю.
В двигателях на четыре скорости обмотка выглядит как разрозненные детали. Когда количество пар меняет, скорость оборотов уменьшаются вполовину. Вторая обмотка будет действовать по такому же принципу.
Критический момент изменяется вместе с количеством пар. Чтобы он не менялся, нужно одновременно с изменением количества пар осуществлять контроль напряжение (может помочь переключать звезды-треугольника или иные варианты).
Плюсы такого варианта заключаются в высоком коэффициенте полезного действия и неизменным характеристикам двигателя.
Минус же выражается в ступенчатом регулировании, большом весе устройств, и электрический мотор обойдётся значительно дороже.
Двигатели с ротором на фазу и регулирование их скорости оборотов
При этих способах используют изменение скольжения, но варианты тоже могут быть разными.
Регулировка напряжения
Асинхронный двигатель подключается с помощью автотрансформатора. При уменьшении напряжения число оборотов, соответственно, станет меньше.
Этот вариант уменьшит перегрузочную способность асинхронного движка. Изменять напряжение можно только в пределах допустимого значения, поскольку выход из этого значение приведёт к поломке электрического двигателя.
Контроль сопротивления в роторе
Этот вариант подразумевает подключение резисторов к ротору. Это поможет плавно увеличить сопротивление.
Скольжение при этом вырастет, а скорость вращения, наоборот, станет ниже.
Плюсом является широкий диапазон регулирования с позиции уменьшения скорости оборотов.
Минусы: низкий коэффициент полезного действия и нестабильные механические характеристики.
Контроль с помощью двойной подпитки
Изменяется скольжение, влияющее на количество оборотов в промежуток времени, хотя скорость магнитного поля не изменится. Энергия в такой цепи будет подаваться на обмотки. Сам контроль произойдёт посредством силы скольжения, трансформированного в ротор с добавочной электродвижущей силой.
Такой вариант применим для габаритных машин с самыми мощными двигателями.
Мягкий старт начала работы

У АД есть свои минусы. Например, старт начинается слишком резко, что может привести к поломке в случае, если пусковой ток превысит значение напряжения.
Для того чтобы начать работу более медленно, есть разные варианты:
- обмотки переключаются по принципу звезды-треугольника;
- начать работу можно через автоматический трансформатор;
- для запуска используют специальные устройства.
Сегодня на многих регуляторах частоты присутствует возможность медленного начала раскрутки. Пусковой ток снизится вместе с общей нагрузкой на АД. Частота и начало работы тесно связаны друг с другом.
Самостоятельное создание устройства контроля вращения
Для двигателей на одну фазу с небольшой мощностью можно использовать приборы изменения электрической мощности. Плюсы такого варианта в надёжности, а минусы заключаются в низком коэффициенте полезного действия, перегреве двигателя и полного отключения асинхронного двигателя.
По схеме ниже можно сконструировать устройство контроля для мощности, не превышающей 500 Вт, при этом скорость оборотов можно увеличить в четыре раза.
В цепи есть генератор, частота которого не меняется. Он собран из мультивибратора, счётчика и полумоста. Есть специальный трансформатор, выполняющий разводку транзисторов.
В цепи С4 можно увидеть, как R7 останавливает скачки напряжения, чтобы сохранить работу транзисторов VT. Напряжение цепи удваивается выпрямителем, конструкция которого подразумевает мост, где напряжение увеличивается.
Жилы обмоток рассчитаны на мощность в 12 В. Первая обмотка трансформатора включает сто двадцать витков, сечение провода 0,7 миллиметров, провод отведён от середины. Вторая, включающая две обмотки в совокупности на сто двадцать витков, обладает той же толщиной сечения.
Важно! Обмотка, следующая второй, должна быть хорошо изолирована из-за большой разницы потенциала. В противофазе происходит соединение затворов ключей и выходных обмоток.
Это всё, что нужно знать о способах регулировки оборотов электрических двигателей. Надеемся, что благодаря этой информации Вы сможете подобрать тот вариант регулировки, который подойдёт именно вашему двигателю!
Источник