- Применение алканов
- Применение алканов
- Применение в промышленности
- Применение в медицине и фармации
- Укажите способы использования предельных углеводородов
- Применение и получение предельных углеводородов
- Применение и получение предельных углеводородов.doc
- Применение и получение предельных углеводородов
- CH4 + H2O —> 3H2 + CO
- С + 2H2 —> CH4
- C + 2H2 CH4 + 75 кДж
Применение алканов
Предельные углеводороды с общей формулой CnH2n+2, основным источником которых служат нефть, газ и каменный уголь, являются сырьевой базой для химической промышленности и основными природным источником энергии.
Применение алканов
Первоначально насыщенные углеводороды использовались как топливо — в результате горения высвобождается энергия:
Области применения алканов связаны с их физико-химическими свойствами:
- Газообразные алканы (метан, пропан и бутан). Горят бледно-голубым или бесцветным пламенем, при этом выделяется большое количество тепла. Применяются для бытовых нужд – как топливо в газовых плитах, зажигалках и газовых баллончиках для туристических горелок. В промышленных объемах — как топливо для газовых электростанций, вырабатывающих тепло и электроэнергию. Метан как часть природного газа — один из лучших природных субстратов, используемых в биотехнологии.
- Жидкие алканы. Являются основной частью горючего для двигателей внутреннего сгорания – от мотоциклетных до ракетных. Изомеры линейных алканов применяют как добавку для повышения качества топлива. Смесь предельных углеводородов с длиной цепочки не более 15 атомов углерода — вазелиновое масло применяют в косметологии и медицине. В промышленности применяют гудрон (остаточный продукт после переработки нефти) для производства строительных кровельных и дорожных битумов и кокса.
- Твердые алканы. Смесь жидких и твердых углеводородов с цепочкой до 25 атомов углерода – вазелин — густая масса, используется в медицине и косметических целях. Смесь алканов С20 -С35 называют парафином и используют для производства свечей, обработки упаковочных материалов и спичек. Парафиновые углеводороды служат основным сырьем для биосинтеза.
Применение в промышленности
Парафины являются основой для производства целого ряда веществ:
- азотной кислоты HNO3;
- насыщенных одноатомных cпиртов СnH2n+1OH;
- сажа (аморфный углерод) — для типографской краски и резины;
- галогензамещенных растворителей и хладонов;
- алкенов;
- альдегидов, которые используются в производстве органических кислот и пластмасс;
- как нефтехимическое сырье для производства ПАВ.
Алканы применяются при производстве синтетических моющих средств.
Исходными веществами для этого служат парафины фракции С41-С44 .
Применение в медицине и фармации
Смесь жидких и твердых парафинов с С Значение алканов
Предельные углеводороды применяются в пищевой и химической промышленности, в энергетике, косметологии и медицине.
Алканы служат растворителями и сырьем для производства лаков, красок, мазей. Их используют в качестве топлива и компонентов для различных битумов.
Химическое производство пластика, ПАВов и синтетических тканей использует в качестве сырья алканы.
С развитием технологий сферы применения насыщенных углеводородов расширяется.
Источник
Укажите способы использования предельных углеводородов
13. Применение и получение предельных углеводородов
Сферы применения предельных углеводородов:
1) метан в составе природного газа находит все более широкое применение в быту и на производстве;
2) пропан и бутан применяются в виде «сжиженного газа», особенно в тех местностях, где нет подвода природного газа;
3) жидкие углеводороды используются как горючее для двигателей внутреннего сгорания в автомашинах, самолетах;
4) метан как доступный углеводород в большей степени используется в качестве химического сырья;
5) реакция горения и разложения метана используется в производстве сажи, идущей на получение типографской краски и резиновых изделий из каучука;
6) высокая теплота сгорания углеводородов обусловливает использование их в качестве топлива;
7) метан – основной источник получения водорода в промышленности для синтеза аммиака и ряда органических соединений.
Наиболее распространенный способ получения водорода из метана – взаимодействие его с водяным паром.
Реакция хлорирования служит для получения хлорпроизводного метана.
Особенности хлорметана: 1) это газ; 2) это вещество, которое легко переходит в жидкое состояние; 3) это вещество, которое поглощает большое количество теплоты при последующем испарении.
Особенности дихлорметана, трихлорметана и тетрахлорметана: 1) это жидкости; 2) используются как растворители; 3) применяются для тушения огня (особенно когда нельзя использовать воду); 4) тяжелые негорючие газы этих веществ, которые образуются при испарении жидкости, быстро изолируют горящий предмет от кислорода воздуха.
Из гомологов метана при реакции изомеризации получаются углероводороды разветвленного строения.
Они используются в производстве каучуков и высококачественных сортов бензина.
Получение углеводородов: 1) предельные углеводороды в больших количествах содержатся в природном газе и нефти; 2) из природных источников их извлекают для использования в качестве топлива и химического сырья.
Особенности синтеза метана: 1) синтез метана показывает возможность перехода от простых веществ к органическим соединениям. Реакция идет при нагревании углерода с водородом в присутствии порошкообразного никеля в качестве катализатора; 2) синтез метана – реакция экзотермическая. Сильное нагревание не будет повышать выход продукта, равновесие сместится в сторону образования исходных веществ; 3) при слабом нагревании будет недостаточна скорость образования метана; 4) оптимальная температура синтеза метана примерно 500 °C; 5) для разложения метана необходима температура 1000 °C.
Источник
Применение и получение предельных углеводородов
Автор: Пользователь скрыл имя, 12 Ноября 2011 в 13:06, реферат
Описание работы
Метан в составе природного газа находит все более широкое применение в быту и на производстве.
Работа содержит 1 файл
Применение и получение предельных углеводородов.doc
Применение и получение предельных углеводородов
Применение углеводородов. Высокая теплота сгорания углеводородов обусловливает использование их в качестве топлива. Метан в составе природного газа находит все более широкое применение в быту и на производстве. Получило распространение применение пропана и бутана в виде «сжиженного газа», особенно в тех местностях, где нет подводки природного газа. Жидкие углеводороды используются как горючее для двигателей внутреннего сгорания в автомашинах, самолетах и т. д.
Как весьма доступный углеводород, метан все в большей степени используется в качестве химического сырья.
Реакции горения и разложения метана используются в производстве сажи, идущей на получение типографской краски и резиновых изделий из каучука. С этой целью в специальные печи вместе с метаном подают такое количество воздуха, чтобы сгорела лишь часть газа. Под действием развивающейся при горении высокой температуры другая часть разлагается, образуя тонкодисперсную сажу.
Метан — основной источник получения водорода в промышленности для синтеза аммиака и ряда органических соединений. Наиболее распространенный способ получения водорода из метана — взаимодействие его с водяным паром. Реакцию проводят в трубчатых печах при температуре около 400°C, давлении 2–3 МПа, в присутствии алюмоникелевого катализатора:
CH4 + H2O —> 3H2 + CO
Для некоторых синтезов Используется непосредственно образующаяся смесь газов. Если же для последующих процессов нужен чистый водород (как в случае получения аммиака), оксид углерода (II) окисляют водяным паром, используя катализаторы.
Реакцией хлорирования получают хлорпроизводные метана. Все они находят практическое применение.
Хлорметан CH3Cl — газ. Как вещество, легко переходящее в жидкое состояние и поглощающее большое количество теплоты при последующем испарении, он применяется в качестве хладагента в холодильных установках.
Дихлорметан CH2Cl2, трихлорметан (хлороформ) CHCl3 и тетрахлорметан CCl4 — жидкости; они используются как растворители. Тетрахлорметан применяется, кроме того, при тушении огня (особенно в тех случаях, когда нельзя использовать воду), так как тяжелые негорючие пары этого вещества, образующиеся при испарении жидкости, быстро изолируют горящий предмет от кислорода воздуха.
При хлорировании метана образуется много хлороводорода. Растворяя его в воде, получают соляную кислоту.
В последнее время из метана получают ацетилен, необходимый для синтеза многих органических веществ.
Из гомологов метана при реакции изомеризации получают углеводороды разветвленного строения. Они используются в производстве каучуков и высококачественных сортов бензина. Высшие углеводороды служат исходными веществами для получения синтетических моющих средств.
Путем химической переработки предельные углеводороды часто превращают в непредельные углеводороды, химически более активные, из которых синтезируют многочисленные органические вещества.
Получение углеводородов. Предельные углеводороды в больших количествах содержатся в природном газе и нефти. Из этих природных источников и извлекают их для использования в качестве топлива и химического сырья.
В теоретическом отношении интересна реакция синтеза метана, так как она показывает возможность перехода от простых веществ к органическим соединениям. Реакция идет при нагревании углерода с водородом в присутствии порошкообразного никеля в качестве катализатора:
С + 2H2 —> CH4
Сопоставляя эту реакцию с термическим разложением метана, мы должны сделать вывод, что она обратима. Учитывая тепловой эффект реакции, можно записать следующее уравнение:
C + 2H2 CH4 + 75 кДж
На основании данного уравнения можно высказать предположение о том, какие условия способствуют сдвигу равновесия в сторону получения метана, а какие будут вызывать его разложение. Так как синтез метана — реакция экзотермическая, то сильное нагревание не будет повышать выход продукта; равновесие сместится в сторону образования исходных веществ. При слабом нагревании будет недостаточна скорость образования метана. Поэтому оптимальная температура синтеза метана примерно 500°C, а для его разложения необходима температура свыше 1000°C.
На смещение равновесия влияет и изменение давления. Так как слева направо реакция идет с уменьшением объемов газов, то повышение давления будет способствовать образованию метана, а уменьшение — разложению его.
Алканы, или парафины — алифатические предельные углеводороды, в молекулах которых атомы углерода связаны между собой простой (одинарной) (s-связью.
Оставшиеся валентности углеродного атома, не затраченные на связь с другими атомами углерода, полностью насыщены водородом. Поэтому предельные (насыщенные) углеводороды содержат в молекуле максимальное число водородных атомов.
1.1. Строение алканов
Простейшим представителем и родоначальником предельных углеводородов является метан СН4. Строение молекулы метана можно выразить структурной (I) или электронной (II) формулой:
В предельных углеводородах атомы углерода находятся в первом валентном состоянии (sp3-гибpидизaция). В этом случае, .как известно, все четыре гибридные орбитали в пространстве составляют геометрическую фигуру — тетраэдр (углы между осями связей С—Н равны 109° 28′). Пространственное расположение атомов в молекуле метана можно показать с помощью тетраэдрических и шаростержневых моделей. Для этого наиболее удобны объемные модели Бриглеба, которые более наглядно отражают относительные размеры атомов в молекуле. Эти модели изготовлены в соответствии с действительным соотношением радиусов атомов (в масштабе 0,05 нм = 1 см).
Если в молекуле метана один атом водорода заместить на метильную группу СН3, то можно вывести структурную формулу следующего за метаном углеводорода — этана C2H6:
Замещая в молекуле этана один атом водорода на метальную группу, выводим формулу третьего углеводорода — пропана С3Н8:
Повторяя это действие много раз, можно вывести формулы и других предельных углеводородов, отличающихся друг от друга числом углеродных атомов (табл. 1). В результате образуется ряд соединений, в котором каждый член отличается от предыдущего на одну группу СН2. Такой ряд называется гомологическим рядом (от греч. homos — последовательный), а его отдельные члены — гомологами. Они обладают близкими химическими свойствами и закономерным изменением физических свойств. Из табл. 1 видно, что у каждого члена гомологического ряда на п атомов углерода приходится 2n + 2 атомов водорода. Следовательно, состав любого члена этого ряда будет выражаться общей формулой СnН2n + 2. Используя эту формулу, можно легко написать молекулярную формулу любого предельного углеводорода — алкана, зная число углеродных атомов в его молекуле. Например, если п = 25, то углерод будет выражаться формулой C25H52.
Таблица 1. Гомологический ряд предельных углеводородов (алканов) нормального (неразветвленного) строения и их одновалентные радикалы
Гомологические ряды характерны для всех классов органических соединений. Они являются прекрасным подтверждением основного закона природы — перехода количественных изменений в качественные. Если от алкана «отнять» один атом водорода, то образуется одновалентный углеводородный остаток — радикал (не смешивайте с реально существующим свободным радикалом). При потере двух или трех атомов водорода образуются соответственно двух- или трехвалентные радикалы (табл. 2). Таблица 2. Наиболее часто встречающиеся углеводородные радикалы
|
В приведенных названиях радикалов используют обозначения: н-нормальный, втор- — вторичный, трет- — третичный.
Как видно из табл. 2, свободная валентность в радикале может находиться при разных углеродных атомах. Если свободная валентность в радикале находится у первичного атома углерода, то такой радикал называется первичным. Соответственно этому могут быть вторичные (свободная валентность принадлежит вторичному атому углерода) и третичные (свободная валентность у третичного углеродного атома) радикалы:.
Источник