Укажите два основных способа моделирования

Моделирование

Моделирование — это метод воспроизведения и исследования определённого фрагмента действительности (предмета, явления, процесса, ситуации) или управления им, основанный на представлении объекта с помощью его копии или подобия — модели (см. Модель). Модель обычно представляет собой либо материальную копию оригинала, либо некоторый условный образ, представленный в абстрактной (мысленной или знаковой) форме и содержащий существенные свойства моделируемого объекта. Процедуры создания моделей широко используются как в научно-теоретических, так и в прикладных сферах человеческой деятельности.

В научном познании (см. Наука) модель рассматривается как «объект-подобие» или «объект-заместитель» объекта-оригинала, воспроизводящий определённые его характеристики. В этом смысле модель всегда соответствует объекту-оригиналу — в тех свойствах, которые подлежат изучению, но в то же время отличается от него по ряду других признаков, что делает модель удобной для исследования изучаемого объекта. Результаты разработки и исследования моделей при определённых условиях, принимаемых в методологии науки и специфических для различных областей и типов моделей, распространяются на оригинал. Использование метода моделирования в научном познании диктуется необходимостью раскрыть такие стороны объектов, которые либо невозможно постигнуть путём непосредственного изучения, либо непродуктивно изучать их таким образом в силу каких-либо ограничений.

В научном познании возможны два способа моделирования:

  1. Эмпирический способ моделирования — подразумевает воссоздание эмпирически выявленных свойств и связей объекта в его модели.
  2. Теоретический способ моделирования — подразумевает теоретическое воссоздание объекта в его модели.

Модели, применяемые в научном познании, разделяются на два больших класса:

  1. Материальные модели представляют собой природные объекты, подчиняющиеся в своём функционировании естественным законам. Подразделяются на два основных вида: предметно-физические и предметно-математические модели.
  2. Идеальные модели представляют собой идеальные образования, зафиксированные в соответствующей знаковой форме и функционирующие по законам логики мышления, отражающей мир. Подразделяются на два основных вида: идеализированные модельные представления и знаковые модели.

Соответственно указанным различениям выделяют основные разновидности моделирования. Каждое из них применяется в зависимости от особенностей изучаемого объекта и характера познавательных задач.

Предметно-физическое моделирование широко используется как в научной практике, так и в сфере материального производства. Такое моделирование всегда предполагает, что модель должна быть сходна с оригиналом по физической природе и отличаться от него лишь численными значениями ряда параметров. Наряду с этим в практике научного исследования часто используется и такой вид моделирования, при котором модель строится из объектов иной физической природы, чем оригинал, но описывается одинаковой с ним системой математических зависимостей. В отличие от предметно-физического этот вид моделирования называют предметно-математическим. Предметная модель становится здесь объектом испытания и изучения, в результате которого создаётся её математическое описание. Последнее затем переносится на моделируемый объект, характеризуя его структуру и функционирование.

В развитой науке, особенно при переходе к теоретическим исследованиям, широко используется моделирование с применением идеальных моделей. Этот способ получения знаний об объектах может быть охарактеризован как моделирование посредством идеализированных представлений. Он является ведущим инструментом теоретического исследования. Активно используя модельные представления, научное исследование вместе с тем применяет и так называемое знаковое моделирование, которое основано на построении и испытании математических моделей некоторого класса явлений, без использования при этом вспомогательного физического объекта, который подвергается испытанию. Последнее отличает знаковую модель от предметно-математической. Такой вид моделирования иногда называют также абстрактно-математическим. Он требует построения знаковой модели, представляющей некоторый объект, где отношения и свойства объекта представлены в виде знаков и их связей. Эта модель затем исследуется чисто логическими средствами, и новое знание возникает в результате дедуктивного развёртывания модели без обращения к предметной области, на основании которой выросла данная знаковая модель. В абстрактно-математическом моделировании модель — это конструкция, изоморфная моделируемой системе. При таком моделировании каждому объекту системы ставится в соответствие определённый элемент моделирующей конструкции, а свойствам и отношениям объектов соответствуют свойства и отношения элементов.

Классическими примерами моделей, основанных на изоморфизме, являются модели аксиоматических систем в математике. Они задают семантику формальных построений и создают возможность для содержательной интерпретации аксиом. Сами аксиомы, как и следствия из них, считаются предложениями некоторого формального языка. Кроме того, задана область интерпретаций, представляющая собой множество индивидных объектов. Изоморфизм задаётся функцией, сопоставляющей каждому имени языка некоторый объект из заданного множества, а каждому выражению языка некоторое отношение объектов этого же множества. Если любое высказывание, которое выведено из аксиом, истинно в области интерпретаций (то есть соответствует реальным отношениям объектов), то эта область называется моделью системы аксиом. Моделирование в математике используется, например, для доказательства непротиворечивости формальных систем.

Этот вид моделирования используется не только в чистой математике, но также при математическом описании природных, общественных, технологических и других сложных систем. Смысл такого описания состоит в том, что отношения между элементами системы выражаются с помощью уравнений, причём так, чтобы каждому термину содержательного описания системы соответствовала какая-либо величина (константа или переменная) или функция, фигурирующая в уравнении. Сами уравнения называются при этом моделью. Как правило, абстрактно-математическое моделирование требует абстракции (см. Абстракция), то есть отвлечения от некоторых свойств и отношений в моделируемой системе. Это позволяет достичь общности модели и утверждать, что она, игнорируя частности, описывает достаточно широкий круг процессов или систем. К тому же без таких упрощений моделирование оказывается бессмысленным ( чрезмерной сложности модели) или вообще невозможным. Другим важным гносеологическим условием моделирования является измеримость всех описываемых объектов и отношений. Чтобы построить модель, необходимо найти их числовое представление. Всякий моделируемый процесс должен быть полностью охарактеризован с помощью параметров, поддающихся измерению.

Другая разновидность моделирования с применением идеальных моделей основана на понятии «чёрный ящик». Этим термином принято называть объект, внутренняя структура которого недоступна для наблюдения и о котором можно судить только по его внешнему поведению, в частности по тому, как он преобразует приходящие на вход сигналы. Если некоторая система слишком сложна, то нет смысла искать её математическое описание. Проще попытаться построить вместо неё другую систему, которая при заданных условиях будет вести себя точно так же. Такое моделирование часто используется при исследовании отдельных систем живых организмов с помощью компьютерной симуляции. Описать работу живого организма уравнениями крайне тяжело или вообще невозможно. Но возможно построить компьютерную схему, которая при подаче на вход определённого стимула давала бы на выходе реакцию, тождественную или близкую к реакции моделируемой системы. Если спектр совпадающих входных и выходных процессов достаточно широк, то можно ожидать, что построенная схема точно воспроизводит исследуемый объект.

Источник

Понятие модели и моделирования

Сам по себе процесс моделирования в полной мере не формализован, большая роль в этом принадлежит опыту инженера. Но, тем не менее, рассматриваемый в теме процесс создания модели в виде шести этапов может стать основой для начинающих и с накоплением опыта может быть индивидуализирован.

Математическая модель , являясь абстрактным образом моделируемого объекта или процесса, не может быть его полным аналогом. Достаточно сходства в тех элементах, которые определяют цель исследования. Для качественной оценки сходства вводится понятие адекватности модели объекту и, в связи с этим, раскрываются понятия изоморфизма и изофункционализма. Формальных приемов, позволяющих автоматически, «бездумно», создавать адекватные математические модели, нет. Окончательное суждение об адекватности модели дает практика, то есть сопоставление модели с действующим объектом. И, тем не менее, усвоение всех последующих тем пособия позволит инженеру справляться с проблемой обеспечения адекватности моделей.

Завершается тема изложением требований к моделям, которые были сформулированы Р. Шенноном на заре компьютерного моделирования тридцать лет назад в книге » Имитационное моделирование систем — искусство и наука». Актуальность этих требований сохраняется и в настоящее время.

1.1. Общее определение модели

Практика свидетельствует: самое лучшее средство для определения свойств объекта — натурный эксперимент, т. е. исследование свойств и поведения самого объекта в нужных условиях. Дело в том, что при проектировании невозможно учесть многие факторы, расчет ведется по усредненным справочным данным, используются новые, недостаточно проверенные элементы (прогресс нетерпелив!), меняются условия внешней среды и многое другое. Поэтому натурный эксперимент — необходимое звено исследования. Неточность расчетов компенсируется увеличением объема натурных экспериментов, созданием ряда опытных образцов и «доводкой» изделия до нужного состояния. Так поступали и поступают при создании, например, телевизора или радиостанции нового образца.

Однако во многих случаях натурный эксперимент невозможен.

Например, наиболее полную оценку новому виду вооружения и способам его применения может дать война. Но не будет ли это слишком поздно?

Натурный эксперимент с новой конструкцией самолета может вызвать гибель экипажа.

Натурное исследование нового лекарства опасно для жизни человека.

Натурный эксперимент с элементами космических станций также может вызвать гибель людей.

Время подготовки натурного эксперимента и проведение мероприятий по обеспечению безопасности часто значительно превосходят время самого эксперимента. Многие испытания, близкие к граничным условиям, могут протекать настолько бурно, что возможны аварии и разрушения части или всего объекта.

Из сказанного следует, что натурный эксперимент необходим, но в то же время невозможен либо нецелесообразен.

Выход из этого противоречия есть и называется он » моделирование «.

Моделирование — это замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала.

Моделирование — это, во-первых, процесс создания или отыскания в природе объекта, который в некотором смысле может заменить исследуемый объект . Этот промежуточный объект называется моделью. Модель может быть материальным объектом той же или иной природы по отношению к изучаемому объекту (оригиналу). Модель может быть мысленным объектом, воспроизводящим оригинал логическими построениями или математическими формулами и компьютерными программами.

Моделирование, во-вторых, это испытание , исследование модели. То есть, моделирование связано с экспериментом, отличающимся от натурного тем, что в процесс познания включается «промежуточное звено» — модель. Следовательно, модель является одновременно средством эксперимента и объектом эксперимента, заменяющим изучаемый объект .

Моделирование, в-третьих, это перенос полученных на модели сведений на оригинал или, иначе, приписывание свойств модели оригиналу. Чтобы такой перенос был оправдан, между моделью и оригиналом должно быть сходство, подобие.

Подобие может быть физическим, геометрическим, структурным, функциональным и т. д. Степень подобия может быть разной — от тождества во всех аспектах до сходства только в главном. Очевидно, модели не должны воспроизводить полностью все стороны изучаемых объектов. Достижение абсолютной одинаковости сводит моделирование к натурному эксперименту, о возможности или целесообразности которого было уже сказано.

Остановимся на основных целях моделирования.

Прогноз — оценка поведения системы при некотором сочетании ее управляемых и неуправляемых параметров. Прогноз — главная цель моделирования .

Объяснение и лучшее понимание объектов. Здесь чаще других встречаются задачи оптимизации и анализа чувствительности. Оптимизация — это точное определение такого сочетания факторов и их величин, при котором обеспечиваются наилучший показатель качества системы, наилучшее по какому-либо критерию достижение цели моделируемой системой. Анализ чувствительности — выявление из большого числа факторов тех, которые в наибольшей степени влияют на функционирование моделируемой системы. Исходными данными при этом являются результаты экспериментов с моделью.

Часто модель создается для применения в качестве средства обучения: модели-тренажеры, стенды, учения, деловые игры и т. п.

Моделирование как метод познания применялось человечеством — осознанно или интуитивно — всегда. На стенах древних храмов предков южно-американских индейцев обнаружены графические модели мироздания. Учение о моделировании возникло в средние века. Выдающаяся роль в этом принадлежит Леонардо да Винчи (1452-1519).

Гениальный полководец А. В. Суворов перед атакой крепости Измаил тренировал солдат на модели измаильской крепостной стены, построенной специально в тылу.

Наш знаменитый механик-самоучка И. П. Кулибин (1735-1818) создал модель одноарочного деревянного моста через р. Неву, а также ряд металлических моделей мостов. Они были полностью технически обоснованы и получили высокую оценку российскими академиками Л. Эйлером и Д. Бернулли. К сожалению, ни один из этих мостов не был построен.

Огромный вклад в укрепление обороноспособности нашей страны внесли работы по моделированию взрыва — генерал-инженер Н. Л. Кирпичев, моделированию в авиастроении — М. В. Келдыш, С. В. Ильюшин, А. Н. Туполев и др., моделированию ядерного взрыва — И. В. Курчатов, А.Д. Сахаров, Ю. Б. Харитон и др.

Широко известны работы Н. Н. Моисеева по моделированию систем управления. В частности, для проверки одного нового метода математического моделирования была создана математическая модель Синопского сражения — последнего сражения эпохи парусного флота. В 1833 году адмирал П. С. Нахимов разгромил главные силы турецкого флота. Моделирование на вычислительной машине показало, что Нахимов действовал практически безошибочно. Он настолько верно расставил свои корабли и нанес первый удар, что единственное спасение турок было отступление. Иного выхода у них не было. Они не отступили и были разгромлены.

Сложность и громоздкость технических объектов, которые могут изучаться методами моделирования, практически неограниченны. В последние годы все крупные сооружения исследовались на моделях — плотины, каналы, Братская и Красноярская ГЭС, системы дальних электропередач, образцы военных систем и др. объекты.

Поучительный пример недооценки моделирования — гибель английского броненосца «Кэптен» в 1870 году. В стремлении еще больше увеличить свое тогдашнее морское могущество и подкрепить империалистические устремления в Англии был разработан суперброненосец «Кэптен». В него было вложено все, что нужно для «верховной власти» на море: тяжелая артиллерия во вращающихся башнях, мощная бортовая броня, усиленное парусное оснащение и очень низкими бортами — для меньшей уязвимости от снарядов противника. Консультант инженер Рид построил математическую модель устойчивости «Кэптена» и показал, что даже при незначительном ветре и волнении ему грозит опрокидывание. Но лорды Адмиралтейства настояли на строительстве корабля. На первом же учении после спуска на воду налетевший шквал перевернул броненосец. Погибли 523 моряка. В Лондоне на стене одного из соборов прикреплена бронзовая плита, напоминающая об этом событии и, добавим мы, о тупоумии самоуверенных лордов Британского Адмиралтейства, пренебрегших результатами моделирования.

1.2. Классификация моделей и моделирования

Каждая модель создается для конкретной цели и, следовательно, уникальна. Однако наличие общих черт позволяет сгруппировать все их многообразие в отдельные классы, что облегчает их разработку и изучение. В теории рассматривается много признаков классификации, и их количество не установилось. Тем не менее, наиболее актуальны следующие признаки классификации:

  • характер моделируемой стороны объекта;
  • характер процессов, протекающих в объекте;
  • способ реализации модели.

1.2.1. Классификация моделей и моделирования по признаку «характер моделируемой стороны объекта»

В соответствии с этим признаком модели могут быть:

  • функциональными (кибернетическими);
  • структурными;
  • информационными.

Функциональные модели отображают только поведение, функцию моделируемого объекта. В этом случае моделируемый объект рассматривается как «черный ящик», имеющий входы и выходы. Физическая сущность объекта, природа протекающих в нем процессов, структура объекта остаются вне внимания исследователя, хотя бы потому, что неизвестны. При функциональном моделировании эксперимент состоит в наблюдении за выходом моделируемого объекта при искусственном или естественном изменении входных воздействий. По этим данным и строится модель поведения в виде некоторой математической функции.

Компьютерная шахматная программа — функциональная модель работы человеческого мозга при игре в шахматы.

Структурное моделирование — это создание и исследование модели, структура которой (элементы и связи) подобна структуре моделируемого объекта. Как мы выяснили ранее, подобие устанавливается не вообще, а относительно цели исследования. Поэтому она может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры — это топологическое описание с помощью теории графов.

Учение войск — структурная модель вида боевых действий.

1.2.2. Классификация моделей и моделирования по признаку «характер процессов, протекающих в объекте»

По этому признаку модели могут быть детерминированными или стохастическими, статическими или динамическими, дискретными или непрерывными или дискретно-непрерывными.

Детерминированные модели отображают процессы, в которых отсутствуют случайные воздействия.

Стохастические модели отображают вероятностные процессы и события.

Статические модели служат для описания состояния объекта в какой-либо момент времени.

Динамические модели отображают поведение объекта во времени.

Дискретные модели отображают поведение систем с дискретными состояниями.

Непрерывные модели представляют системы с непрерывными процессами.

Дискретно-непрерывные модели строятся тогда, когда исследователя интересуют оба эти типа процессов.

Очевидно, конкретная модель может быть стохастической, статической, дискретной или какой-либо другой, в соответствии со связями, показанными на рис. 1.1.

Источник

Читайте также:  Какими способами можно создавать диаграммы
Оцените статью
Разные способы
Наиме­но­ва­ние: Моделирование (образовано от латинского слова: modus — мера, способ, образец).
Опреде­ле­ние: Моделирование — это метод воспроизведения и исследования определённого фрагмента действительности (предмета, явления, процесса, ситуации) или управления им, основанный на представлении объекта с помощью модели.
Раздел: Концепты Концепты научного дискурса
Дискурс: Наука
Субдис­курс: Методология науки Методы научного познания
Связан­ные концепты: Модель
Текст статьи: © В. С. Стёпин. Г. Б. Гутнер. Ф. Н. Голдберг. Подготовка элект­рон­ной публи­ка­ции и общая редакция: Центр гума­нитар­ных техно­логий. Ответ­ст­вен­ный редактор: А. В. Агеев . Инфор­ма­ция на этой стра­нице пери­оди­чески обнов­ля­ется. Послед­няя редакция: 16.11.2021.